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Hirschsprung disease is a congenital disorder clinically characterized by the 
absence of colonic ganglia and genetically by extensive heterogeneity. Genes 
involved include RET, GDNF, EDNRB and EDN3. Mutations of these genes 
may give dominant, recessive, or polygenic patterns of inheritance. In particu­
lar in the case of missense mutations, it is therefore far from easy to assess 
whether a given mutation will contribute to the phenotype. We discuss criteria 
for such an assessment and pay special attention to functional assays. The 
interpretation of mutations as contributing to a disease phenotype or as mere­
ly representing a rare polymorphism has direct clinical consequences. Hirsch­
sprung disease with major and modifying sequence variants in a variety of 
genes might well serve as a model for the many complex disorders for which 
the search for genes involved has only just been initiated. 

Hirschsprung disease (HSCR) or colonic aganglionosis 
is a congenital disorder characterized by intestinal ob­
struction due to an absence of intramural ganglia along 
variable lengths of the colon. The incidence of HSCR is 
1 per 5,000 live births. Both genetic and environmental 
factors are thought to contribute to the development of 
the disease phenotype. In some families a clear dominant 
pattern of inheritance is observed, while in others a reces­
sive form or a sex-modified multifactorial pattern of 
inheritance seems to apply. Moreover, HSCR is found 
associated with several syndromes and dysmorphic fea­
tures. HSCR seems therefore to be a heterogeneous dis­
ease in which mutations in some genes give a dominant 
pattern of inheritance, mutations in other genes lead to a 
recessive mode of inheritance, and further genes contrib­
ute to the phenotype according to a polygenic/multifacto­
rial model [1]. The genetic heterogeneity of HSCR is 
obvious from the occurrence of mutations in different 
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genes. A dominant pattern of inheritance is found associ­
ated with mutations in the RET gene [2, 3], which codes 
for a receptor tyrosine kinase (fig. 1). The effect of muta­
tions in EDNRB [4], coding for the endothelin-B receptor 
(fig. 2), and in EDN3 [5, 6], coding for one of the ligands 
of the endothelin-B receptor (fig. 3), seems to be dosage 
dependent, since homozygous mutations in EDNRB and 
EDN3 have both been found associated with a combined 
Waardenburg type 2 and HSCR phenotype (Shah-Waar­
denburg syndrome), while patients with heterozygous mu­
tations, present either a HSCR-only phenotype or certain 
symptoms of the Waardenburg type 2 syndrome [4-10]. 
Mutations in a fourth gene, GDNF [11, 12], the gene cod­
ing for the ligand of the RET receptor (fig. 4), have been 
suggested to be insufficient to cause HSCR, but to con­
tribute to the phenotype in combination with mutations 
in other genes. 

R.M.W. Hofstra 
University of Groningen, Department of Medical Genetics 
Ant. Deusinglaan 4 
9713 A W, Groningen (The Netherlands) 
Tel. 31503633190, fax 31 503632947, e-mail R.M.W.Hofstra@med.rug.nl 



RETmRNA s' 

l2644q~i 

1063+9(H i i;1 
1120de1G . S36SX 

E762Q 
S76SP 

261SdeIA I 
I 1879+Sg~C 2397dolC E921X· 2864insT do1NI059 

228S+!!IC~ T W'142X 

I {1617dUP121insI6 
1699de1iS 

sip peptide cysteine rich.domain TM domain 

EDNRBmRNA 5' 

G57S 

EDNRB protein 

EDN3mRNA 5' 11 

A183G 

S305N 

Y293L 

W276C 
W275X 

R319W 

M374t 

N3781 

P383L 

transmembrane domains 

2 3 4 I 5 3' 

262GC,rT 

AlaJ7Thr , , 
Cys159Phe Ala.224Thr 

I insA>Glu 19&X I 
preproendothelin NH3+ §:§ ET3 I!! q Iii HI ET3-1ike 

~1~----~F~cs~lll"~'I~!~~~s~==~--~ 
coo· 

signal peptide 
ECEICS 

3' 

coo· 

Fig. 1. Schematic representation of the RETmRNA, the encoded protein, and the mutations found to date [16, 
22-24]. Indicated are the positions of the mutations in both the protein and the mRNA (exons). Missense mutations 
are shown above the schematic representation ofthe mRNA, truncating mutations are shown under it. 

Fig. 2. Schematic representation of the EDNRB mRNA, the EDNRB protein with its seven membrane-spanning 
domains, three extra-cellular and intra-cellular loops, and the mutations found to date [4, 5, 7-9]. 

Fig. 3. Schematic representation of the EDN3 mRNA, the encoded protein preproendothelin, and the mutations 
found to date [5, 6,10, 18]. Indicated are the mature peptide EDN3, which is the product of proteolytic cleavage ofthe 
preproendothelin by furin and the endothelin converting enzyme 1, the ET3-like domain, and a signal peptide 
domain. 
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Fig. 4. Schematic representation of the GDNFmRNA, the encoded protein, and the mutations found to date [11, 
12, 19]. Indicated in the figure are the potential secretion signal (S), the consensus sequence for proteolytic processing 
(P), the conserved peptide domains (C), the furin cleavage site (FCS), and the endothe1in converting enzyme cleavage 
sites (ECE1 CS), and the positions ofthe mutations reported to date. 

In HSCR as well as in many other disorders, the 
involvement of a number of genes, either independently 
or in association, makes mutation detection and interpre­
tation of the mutations - in particular missense mutations 
- far from easy. The question whether a single mutation 
contributes to the disease phenotype or merely represents 
a rare polymorphism is constituting a major problem with 
obvious direct clinical consequences. 

Several criteria are generally applied, usually in combi­
nation, to assess the possible pathogenicity of a missense 
mutation: (1) de novo appearance of a mutation; (2) segre­
gation of the mutation with the disease within pedigrees; 
(3) absence of the mutation in control individuals; (4) a 
change of amino acid polarity or size in the encoded pep­
tide; (5) occurrence of the amino acid change in a domain 
which is evolutionarily conserved between species and/or 
shared between proteins belonging to the same protein 
family; (6) effect of the mutation in a functional in vitro 
system or in an animal model; (7) previous inclusion of 
the mutation in the increasing number of disease-specific 
mutation databases. Application of these criteria is not 
without difficulties, as will be evident from a number of 
examples in HSCR. 

For EDNRB, most of the mutations observed are mis­
sense mutations (fig. 2). One of these, Gly57Ser, was con­
sidered pathogenic as it occurred in a highly conserved 
region and was not present in 130 control chromosomes 
[9]. Moreover, the mutation changes a nonpolar amino 
acid into a polar one. Occurrence of this mutation was 
independently confirmed in 3 of 40 HSCR patients, but 
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also seen in 7 of 90 control individuals (180 chromo­
somes) [5]. Although the arguments for pathogenicity [9] 
looked solid, the later findings make the variant more 
likely a nonpathogenic polymorphism. A comparable ex­
ample is provided by a specific RET mutation. The C to T 
transition in exon 19 of RET, leading to the substitution 
of a nonpolar cysteine for a polar arginine at codon 982, 
i.e. near the end of the functionally important tyrosine 
kinase domain, was initially found in 3 out of 80 unre­
lated HSCR patients and not observed among 100 control 
chromosomes. It was therefore assumed to be a causative 
mutation at the time of presentation of the data in a 'RET 
Gene Mutations' workshop at the annual meeting of the 
American Society of Human Genetics in 1994 [13]. Sub­
sequently, the same mutation was found to occur twice in 
180 control chromosomes [14]. Furthermore, a functional 
test did not demonstrate any measurable effect [15]. 
Thus, causative as the mutation seemed a first sight, it is 
more likely that it is not associated with HSCR [16]. 

Regarding the 'functional test' argument, one should 
be cautious: small effects on the disease phenotype may 
easily be missed, notably when the functional test, as in 
the above-mentioned case, makes use of an expression 
vector with a strong promoter. Moreover, it cannot be 
ruled out that effects of an in vivo test, such as (in)activa­
tion of cell-specific signaling pathways, would be different 
from those of an in vitro test. An overview of functional 
assays for the genes involved in HSCR is given in figure 5. 
Interpretation of functional assays may cause more prob­
lems. If a mutation results in a truncated protein, testing 
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Fig. 5. Functional tests for the proteins involved in HSCR. The 
figure shows a schematic representation of the proteins involved in 
HSCR. Based upon the different functions of the proteins, specific 
functional assays can be applied. RET, a receptor tyrosine kinase, is 
normally activated (phosphorylated) by its ligand GDNF in combi­
nation with GDNFR-a. No functional tests for GDNF have been 
described yet. Conceivably, the effect of mutant GDNF cDNA, tran­
siently expressed and secreting its product into the culture medium, 
might be assessed by determining the activity of transiently ex­
pressed wild type RET. Activation of the transiently expressed (mu­
tant) RET cDNA, in a cell line expressing GDNFR-a and stimulated 
by GDNF, can be measured via the phosphorylation status of the 
protein [15, 25-27], its transforming capacity [15, 25-27], the trans­
port of the protein to the plasma membrane [28], or the binding to or 

its phenotypic effect in a functional assay might seem 
unnecessary. Nonetheless, a recent breast cancer study 
[17] revealed a noncausative BRCA2 variant leading to a 
stop codon in the 3' part of the gene. A mutation of EDN3 
provides another example. A single nucleotide insertion 
was found as a heterozygous mutation in a patient with 
congenital central hypoventilation syndrome (CCHS), a 
disease which in rare cases is found associated with 
HSCR, although not in this patient [18]. The mutation 
leads to truncation of a part of the protein which is nor­
mally cleaved off during processing of the precursor to the 
mature product. Although it was not excluded that this 
mutation might represent a rare polymorphism, it was 
actually presented mainly as evidence for a common 
molecular pathogenesis of HSCR and CCHS. Still, when 
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activation by RET of different cellular substrates [29, 30] (in particu­
lar Shc [31, 32], Grb2 [32], GrblO [33], PLCy [34], Crk [35], Nck 
[35]). EDNRB functioning can be measured via ligand-induced tran­
sient Ca2+ levels in cells after transfection with mutant EDNRB 
cDNA [4]. To examine the functional significance of an EDN3 muta­
tion at the protein level secretion of EDN3 can be tested after trans­
fecting a mutant EDN3 cDNA into an ECE-l expressing cell line 
(CHO/ECEI cells). As the protein encoded by EDN3, preproendo­
thelin, is enzymatically cleaved by furin and ECEI into the mature 
peptide EDN3, secretion of the peptide into the culture medium can 
be measured [18]. Ifthe mutation is present in the mature peptide the 
functioning of EDNRB, which is activated by EDN3, might be 
tested. 

the mutant cDNA was transfected into Chinese hamster 
ovary cells, the mature peptide was produced in normal 
quantities. In the same in vitro test system, the EDN3 
missense mutation found in an HSCR patient with Waar­
denburg type 2 and leading to an amino acid substitution 
elsewhere in a precursor domain outside the mature pep­
tide [5] did cause near-complete absence of mature EDN3 
product [M. Yanagisawa, personal commun.]. 

The interpretation of mutations in HSCR patients has 
become even more complicated with two reports [11, 12] 
each describing patients with a different RET mutation 
(one de novo) accompanied by the same GDNFmissense 
mutation, Arg93Trp, thus suggestive of a digenic mode of 
inheritance. Both reports concluded that in these cases the 
mutated GDNF protein most probably cannot cause 
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HSCR on its own, but presumably contributes to the phe­
notype in combination with mutant RET [11,12]. A simi­
lar combined effect might also apply to another GDNF 
mutation, Aspl50Asn, accompanied by a trisomy 21 [12]. 
The same mutation was found once (in a sporadic HSCR 
patient) when we screened 100 HSCR patients for GDNF 
mutations. A comprehensive mutation scanning of all 
known HSCR genes by DGGE failed to detect any further 
mutation in this patient (our own unpublished results). A 
third GDNF mutation, Pro21Ser, was present homozy­
gously in a healthy father of two affected heterozygous 
individuals [12]. Whether GDNFshould only be seen as a 
modifier gene can be debated, as in a sporadic HSCR 
patient a de novo mutation of GDNF has been found 
[19]. This might point to a major contribution of GDNF 
to the phenotype of that patient. That HSCR most proba­
bly is or can be polygenic has been demonstrated more 
convincingly by haplotype analysis in a large Menno­
nite kindred [4, 20]. Interpretation of mutations on the 
assumption of a di/polygenic mode of inheritance is 
difficult. Consider for example the GDNF mutation 
Aspl50Asn, mentioned before, which has been found in 
HSCR patients both in combination with a trisomy 21 
and on its own. When we screened 150 control individu­
als (300 chromosomes) we found the mutation once. On 
the assumption of di/polygenicity, finding the same muta­
tion in a patient and in a control individual no longer 
excludes the fact that the mutation can contribute to the 
disease phenotype. It may be noted that all but one of the 
patients reported with a GDNF missense mutation inher­
ited their mutation from a healthy parent. One would 
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expect, however, that the frequency of such mutations in 
the normal population would be lower than that in the 
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As discussed, there is a variety of arguments that can 
help to decide whether or not a given variant should be 
considered as a causative mutation. In a polygenic model 
it might nevertheless be virtually impossible to conclude 
whether a given mutation in one of the genes supposed to 
be involved will contribute to the disease phenotype or 
not. In this respect, HSCR with its likely polygenic etiolo­
gy, and with major and modifying sequence variants, 
might serve as a model for the many complex genetic dis­
orders for which the search for genes involved has only 
just been initiated. 
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