Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of spin and charge collective modes in one-dimensional metallic chains

Abstract

The many-body theory of interacting electrons in solids establishes the existence of elementary excitations, named quasi-particles, which show a one-to-one correspondence with non-interacting electrons. But this so-called Fermi liquid approach breaks down spectacularly in one-dimensional metals1. In this situation, which is described by the Luttinger liquid formalism, the quasiparticles are replaced by distinct collective excitations involving spin and charge, called spinons and holons, respectively2. This approach predicts power-law behaviour for the various properties of one-dimensional metals which is experimentally testable using a wide variety of methods, such as transport measurements3,4 and optical conductivity measurements5. Photoemission, on the other hand, provides a means by which the spin and charge excitations can be observed directly. Previous photoemission studies of quasi-one-dimensional metals have essentially revealed only the absence of any discontinuity of the spectral function at the Fermi energy6, consistent with theoretical expectations. Recently, signatures of the existence of spin-charge separation have been inferred from line-shape analyses in a metal with different bands7 and in an insulator8. Here we present photoemission data from a genuine one-dimensional metal constructed on an insulating substrate. The spectra contain structures indicative of the excitation of spin and charge collective modes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface crystallography of the system.
Figure 2: Dispersion of the Au-induced state parallel to the chains.
Figure 3: Angle-resolved photoemission spectra with varying surface wave vector k perpendicular to the chains.
Figure 4: Detailed angle-resolved photoemission spectra of Si(111)5 × 1Au for θe between -6° and -18°.

Similar content being viewed by others

References

  1. Luttinger,J. M. An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154–1162 ( 1963).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Voit,J. One-dimensional Fermi liquids. Rep. Prog. Phys. 18, 997– 1116 (1995).

    Google Scholar 

  3. Grayson,M., Tsui,D. C., Pfeiffer,L. N., West,K. W. & Chang,A. M. Continuum of chiral Luttinger liquids at the fractional quantum hall edge. Phys. Rev. Lett. 80, 1062–1065 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Bockrath,M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 ( 1999).

    Article  ADS  CAS  Google Scholar 

  5. Schwartz,A. et al. On-chain electrodynamics of metallic (TMTSF)2 X salts: observation of Tomonaga-Luttinger liquid response. Phys. Rev. B 58, 1261–1271 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Grioni,M. & Voit,J. in Electron Spectroscopies Applied to Low-dimensional Materials (eds Stanberg, H. & Hughes, H.) (Kluwer, Dordrecht, in the press).

  7. Denlinger,J. D. et al. Non-Fermi-liquid single particle line shape of the quasi-one-dimensional non-CDW metal Li0.9Mo6O17: comparison to the Luttinger liquid. Phys. Rev. Lett. 82, 2540–2543 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Kim,C. et al. Observation of spin-charge separation in one-dimensional SrCuO 2. Phys. Rev. Lett. 77, 4054– 4057 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Bertel,E. & Lehmann,L. Electronic structure of self-organised lateral superlattices on a metal surface: O/Cu(110). Phys. Rev. Lett. 80, 1497–1500 ( 1998).

    Article  ADS  CAS  Google Scholar 

  10. Hill,I. G. & McLean,A. B. Metallicity of In chains on Si(111). Phys. Rev. B 56, 15725– 15728 (1997).

    Article  ADS  CAS  Google Scholar 

  11. O'Mahony,J. D., McGilp,J. F., Flipse,C. F. J., Weightman,P. & Leibsle,F. M. The nucleation and evolution of the 5 × 2-Au structure on Si(111). Phys. Rev. B 49, 2527–2535 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Collins,I. R. et al. Angle-resolved photoemission from an unusual quasi-one-dimensional metallic system: a single domain Au-induced 5 × 2 reconstruction of Si(111). Surf. Sci. 325, 45– 49 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Hill,I. G. & McLean,A. B. Role of adatoms in the Si(111)-Au(5 × 2) quasi-one-dimensional system. Phys. Rev. B 55, 15664–15668 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Garnier,M., Purdie,D., Breuer,K., Hengsberger,M. & Baer, Y. Momentum resolved photoemission of the Kondo peak in an ordered Ce-containing alloy. Phys. Rev. B 56, 11399–11402 (1997).

    Article  ADS  Google Scholar 

  15. Jalochowski,M., Strozak,M. & Zdyb,R. Gold-induced ordering on vicinal Si(111). Surf. Sci. 375, 203–209 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Shibata,M., Sumita,I. & Nakajima, M. Structure and width of Au-adsorbed narrow Si(111) terraces. Phys. Rev. B 57, 1626– 1630 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Kevan,S. D. (ed.) Angle-Resolved Photoemission: Theory and Current Applications (Elsevier, Amsterdam, 1992).

    Google Scholar 

  18. Demuth,J. E., Thompson,W. J., DiNardo,N. J. & Imbihl,R. Photoemission-based photovoltage probe of semiconductor surface and interface electronic structure. Phys. Rev. Lett. 56, 1408–1411 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Voit,J. in The Physics and Mathematical Physics of the Hubbard Model (eds Baeriswyl, D., Campbell, D. K., Carmelo, J. M. P., Guinea, F. & Louis, E.) 263–272 (Plenum, New York, 1995).

    Book  Google Scholar 

  20. Voit,J. Charge-spin separation and the spectral properties of Luttinger liquids. J. Phys. C 5, 8305–8336 ( 1993).

    CAS  Google Scholar 

  21. Eggert,S., Johannesson,H. & Mattsson, A. Boundary effects on spectral properties of interacting electrons in one dimension. Phys. Rev. Lett. 76, 1505–1508 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Joynt,R. Pseudogaps and extrinsic losses in photoemission experiments on poorly conducting solids. Science 284, 777– 779 (1999).

    Article  ADS  CAS  Google Scholar 

  23. LaShell,S., McDougall,B. A. & Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 ( 1996).

    Article  ADS  CAS  Google Scholar 

  24. Meden,V. & Schönhammer,K. Spectral functions for the Tomonaga-Luttinger model. Phys. Rev. B 46, 15753–15760 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Zacher,M. G., Arrigoni,E., Hanke,W. & Schrieffer,J. R. Systematic numerical study of spin-charge separation in one dimension. Phys. Rev. B 57, 6370–6375 ( 1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Beck and R. Frésard for discussions. This work was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Segovia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segovia, P., Purdie, D., Hengsberger, M. et al. Observation of spin and charge collective modes in one-dimensional metallic chains. Nature 402, 504–507 (1999). https://doi.org/10.1038/990052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/990052

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing