Synexpression groups in eukaryotes

Article metrics

Abstract

In 1960, Jacob and Monod described the bacterial operon, a cluster of functionally interacting genes whose expression is tightly coordinated. Global expression analysis has shown that the highly coordinate expression of genes functioning in common processes is also a widespread phenomenon in eukaryotes. These sets of co-regulated genes, or ‘synexpression groups’, show a striking parallel to the operon, and may be a key determinant facilitating evolutionary change leading to animal diversity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Identification of synexpression groups.
Figure 2: Synexpression groups.
Figure 3: Adapative advantages of synexpression groups.

References

  1. 1

    Brown,P. O. & Botstein,D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33 –37 (1999).

  2. 2

    Gerhold,D., Rushmore,T. & Caskey,C. T. DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168– 173 (1999).

  3. 3

    Lipshutz,R. J., Fodor,S. P., Gingeras,T. R. & Lockhart,D. J. High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24 (1999).

  4. 4

    Bowtell,D. D. Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21, 25– 32 (1999).

  5. 5

    Cheung,V. G. et al. Making and reading microarrays. Nat. Genet. 21, 15–19 (1999).

  6. 6

    Duggan,D. J., Bittner,M., Chen,Y., Meltzer,P. & Trent,J. M. Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 ( 1999).

  7. 7

    Bassett,D. E., Eisen,M. B. & Boguski,M. S. Gene expression informatics—it's all in your mine. Nat. Genet. 21, 51– 55 (1999).

  8. 8

    DeRisi,J. L., Vishwanath,R. I. & Brown,P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

  9. 9

    Chu,S et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 ( 1998).

  10. 10

    Cho,R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

  11. 11

    Spellman,P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273– 97 (1998).

  12. 12

    Vishwanath,R. I. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83– 87 (1999).

  13. 13

    Wen,X. et al. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl Acad. Sci. USA 95, 334–339 (1998).

  14. 14

    Fambrough,D., McClure,K., Kazlauskas,A. & Lander,E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

  15. 15

    Eisen,M. B., Spellman,P. T., Brown,P. O. & Botstein,D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).

  16. 16

    Gawantka,V. et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95–141 (1998).

  17. 17

    Niehrs,C. Gene-expression screens in vertebrate embryos: more than meets the eye. Genes Funct. 1, 229–231 (1997).

  18. 18

    Onichtchouk,D. et al. The Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controling dorso–ventral patterning of Xenopus mesoderm. Development 122, 3045–3053 (1996).

  19. 19

    Jen, W. -C., Gawantka,V., Pollet,N., Niehrs,C. & Kintner,C. Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev. 13, 1486–1499 (1999).

  20. 20

    Dandekar,T., Snel,B., Huynen,M. & Bork,P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 273, 324–328 (1998).

  21. 21

    Jacob,F. The operon—25 years later. C. R. Acad. Sci. Paris 320, 199–206 (1997).

  22. 22

    Lawrence,J. G. Selfish operons and speciation by gene transfer. Trends Microbiol. 5, 355–359 ( 1997).

  23. 23

    Blattner,F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 ( 1997).

  24. 24

    Blumenthal,T. Gene clusters and polycistronic transcription in eukaryotes. BioEssays 20, 480–487 ( 1998).

  25. 25

    McInerny,C. J., Partridge,J. F., Mikesell,G. E., Creemer,D. P. & Breeden,L. L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11, 1277–1288 (1997).

  26. 26

    Yuh,C. H., Bolouri,H. & Davidson,E. H. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998).

  27. 27

    Britten,R. J. & Davidson,E. H. Gene regulation for higher cells: a theory. Science 165, 349– 357 (1969).

  28. 28

    Gerhart,J. & Kirschner,M. Cells, Embryos and Evolution (Blackwell, Malden, 1997).

  29. 29

    Duboule,D. & Wilkins,A. S. The evolution of ’bricolage’. Trends Genet. 14, 54–59 (1998).

  30. 30

    Huang,F. Syntagms in development and evolution. Int. J. Dev. Biol. 42, 487–494 (1998).

  31. 31

    Jan,Y. N. & Jan,L. Y. Functional gene cassettes in development. Proc. Natl Acad. Sci. USA 90, 8305– 8307 (1993).

  32. 32

    Nishida,E. & Gotoh,Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131 ( 1993).

  33. 33

    Cheverud,J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 ( 1996).

  34. 34

    Shubin,N., Tabin,C. & Carroll,S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 ( 1997).

  35. 35

    Artavanis-Tsakonas,S., Rand,M. D. & Lake,R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).

  36. 36

    Lagna,G., Hata,A., Hemmati-Brivanlou,A. & Massague,J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832–836 (1996).

  37. 37

    Meersman, G. et al. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in vivo and transcriptional activation. Mech. Develop. 61, 127–140 ( 1997).

  38. 38

    Bhushan,A., Chen,Y. & Vale,W. SMAD7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev. Biol. 200, 260– 268 (1998).

  39. 39

    Frisch,A. & Wright,C. V. E. XBMPRII, a novel Xenopus type II receptor mediating BMP signalling in embryonic tissues. Development 125, 431–442 (1998).

  40. 40

    Hata,A., Lagna,G., Massague,J. & Hemmati-Brivanlou,A. SMAD6 inhibits BMP/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes Dev. 12, 186– 197 (1998).

  41. 41

    Onichtchouk,D. et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 400, 480–485 (1999).

  42. 42

    Wagner,G. P. in Advances in Artificial Life (eds Moran, F., Moreno, A., Merelo, J. J. & Chacon, P. ) 317–328 (Springer, Berlin, 1995).

Download references

Acknowledgements

We thank D. Duboule and W. Pyerin for critical reading of the manuscript.

Author information

Correspondence to Christof Niehrs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niehrs, C., Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999) doi:10.1038/990025

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.