Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Synexpression groups in eukaryotes

Abstract

In 1960, Jacob and Monod described the bacterial operon, a cluster of functionally interacting genes whose expression is tightly coordinated. Global expression analysis has shown that the highly coordinate expression of genes functioning in common processes is also a widespread phenomenon in eukaryotes. These sets of co-regulated genes, or ‘synexpression groups’, show a striking parallel to the operon, and may be a key determinant facilitating evolutionary change leading to animal diversity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of synexpression groups.
Figure 2: Synexpression groups.
Figure 3: Adapative advantages of synexpression groups.

Similar content being viewed by others

References

  1. Brown,P. O. & Botstein,D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33 –37 (1999).

    Article  CAS  Google Scholar 

  2. Gerhold,D., Rushmore,T. & Caskey,C. T. DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168– 173 (1999).

    Article  CAS  Google Scholar 

  3. Lipshutz,R. J., Fodor,S. P., Gingeras,T. R. & Lockhart,D. J. High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24 (1999).

    Article  CAS  Google Scholar 

  4. Bowtell,D. D. Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21, 25– 32 (1999).

    Article  CAS  Google Scholar 

  5. Cheung,V. G. et al. Making and reading microarrays. Nat. Genet. 21, 15–19 (1999).

    Article  CAS  Google Scholar 

  6. Duggan,D. J., Bittner,M., Chen,Y., Meltzer,P. & Trent,J. M. Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 ( 1999).

    Article  CAS  Google Scholar 

  7. Bassett,D. E., Eisen,M. B. & Boguski,M. S. Gene expression informatics—it's all in your mine. Nat. Genet. 21, 51– 55 (1999).

    Article  CAS  Google Scholar 

  8. DeRisi,J. L., Vishwanath,R. I. & Brown,P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Chu,S et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 ( 1998).

    Article  ADS  CAS  Google Scholar 

  10. Cho,R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  Google Scholar 

  11. Spellman,P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273– 97 (1998).

    Article  CAS  Google Scholar 

  12. Vishwanath,R. I. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83– 87 (1999).

    Article  Google Scholar 

  13. Wen,X. et al. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl Acad. Sci. USA 95, 334–339 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Fambrough,D., McClure,K., Kazlauskas,A. & Lander,E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

    Article  CAS  Google Scholar 

  15. Eisen,M. B., Spellman,P. T., Brown,P. O. & Botstein,D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Gawantka,V. et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95–141 (1998).

    Article  CAS  Google Scholar 

  17. Niehrs,C. Gene-expression screens in vertebrate embryos: more than meets the eye. Genes Funct. 1, 229–231 (1997).

    Article  CAS  Google Scholar 

  18. Onichtchouk,D. et al. The Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controling dorso–ventral patterning of Xenopus mesoderm. Development 122, 3045–3053 (1996).

    CAS  PubMed  Google Scholar 

  19. Jen, W. -C., Gawantka,V., Pollet,N., Niehrs,C. & Kintner,C. Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev. 13, 1486–1499 (1999).

    Article  Google Scholar 

  20. Dandekar,T., Snel,B., Huynen,M. & Bork,P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 273, 324–328 (1998).

    Article  Google Scholar 

  21. Jacob,F. The operon—25 years later. C. R. Acad. Sci. Paris 320, 199–206 (1997).

    Article  CAS  Google Scholar 

  22. Lawrence,J. G. Selfish operons and speciation by gene transfer. Trends Microbiol. 5, 355–359 ( 1997).

    Article  CAS  Google Scholar 

  23. Blattner,F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 ( 1997).

    Article  CAS  Google Scholar 

  24. Blumenthal,T. Gene clusters and polycistronic transcription in eukaryotes. BioEssays 20, 480–487 ( 1998).

    Article  CAS  Google Scholar 

  25. McInerny,C. J., Partridge,J. F., Mikesell,G. E., Creemer,D. P. & Breeden,L. L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11, 1277–1288 (1997).

    Article  CAS  Google Scholar 

  26. Yuh,C. H., Bolouri,H. & Davidson,E. H. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Britten,R. J. & Davidson,E. H. Gene regulation for higher cells: a theory. Science 165, 349– 357 (1969).

    Article  ADS  CAS  Google Scholar 

  28. Gerhart,J. & Kirschner,M. Cells, Embryos and Evolution (Blackwell, Malden, 1997).

    Google Scholar 

  29. Duboule,D. & Wilkins,A. S. The evolution of ’bricolage’. Trends Genet. 14, 54–59 (1998).

    Article  CAS  Google Scholar 

  30. Huang,F. Syntagms in development and evolution. Int. J. Dev. Biol. 42, 487–494 (1998).

    CAS  PubMed  Google Scholar 

  31. Jan,Y. N. & Jan,L. Y. Functional gene cassettes in development. Proc. Natl Acad. Sci. USA 90, 8305– 8307 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Nishida,E. & Gotoh,Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131 ( 1993).

    Article  CAS  Google Scholar 

  33. Cheverud,J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 ( 1996).

    Article  Google Scholar 

  34. Shubin,N., Tabin,C. & Carroll,S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 ( 1997).

    Article  ADS  CAS  Google Scholar 

  35. Artavanis-Tsakonas,S., Rand,M. D. & Lake,R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).

    Article  ADS  CAS  Google Scholar 

  36. Lagna,G., Hata,A., Hemmati-Brivanlou,A. & Massague,J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832–836 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Meersman, G. et al. The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in vivo and transcriptional activation. Mech. Develop. 61, 127–140 ( 1997).

    Article  Google Scholar 

  38. Bhushan,A., Chen,Y. & Vale,W. SMAD7 inhibits mesoderm formation and promotes neural cell fate in Xenopus embryos. Dev. Biol. 200, 260– 268 (1998).

    Article  CAS  Google Scholar 

  39. Frisch,A. & Wright,C. V. E. XBMPRII, a novel Xenopus type II receptor mediating BMP signalling in embryonic tissues. Development 125, 431–442 (1998).

    CAS  PubMed  Google Scholar 

  40. Hata,A., Lagna,G., Massague,J. & Hemmati-Brivanlou,A. SMAD6 inhibits BMP/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes Dev. 12, 186– 197 (1998).

    Article  CAS  Google Scholar 

  41. Onichtchouk,D. et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 400, 480–485 (1999).

    Article  ADS  Google Scholar 

  42. Wagner,G. P. in Advances in Artificial Life (eds Moran, F., Moreno, A., Merelo, J. J. & Chacon, P. ) 317–328 (Springer, Berlin, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank D. Duboule and W. Pyerin for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehrs, C., Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999). https://doi.org/10.1038/990025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/990025

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing