Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An efficient liposomal gene delivery vehicle using Sendai F/HN proteins and protamine

Abstract

By means of a simple mixing procedure, we have constructed cationic Sendai virosomes consisting of fusogenic viral F/HN proteins and cationic lipids. Sendai virus F/HN proteins were purified by Triton X-100 treatment and sequential centrifugation, and then quantitatively added to cationic liposomes. The presence of HN proteins is essential for hemolytic activity of Sendai virus as well as efficient gene transfection. The amount of detergent added for purification of F/HN proteins was also crucial for hemolytic activity. The relevance of F/HN proteins in the gene-transfer capability of the cationic Sendai F/HN virosomes (CSVs) was verified by heat inactivation of the F/HN proteins, and cell-binding competition. DNA condensation by protamine sulfate was able to further enhance the transfection efficiency and serum resistance of CSV. The enhanced transfection efficiency of protamine-condensed DNA-encapsulating cationic Sendai F/HN virosomes (PCSVs) may result from specific and efficient cell binding mediated by F/HN proteins and efficient DNA encapsulation by protamine. The DNA condensation by protamine was crucial for systemic in vivo gene transfer by CSVs. The PCSVs exhibited a higher gene expression in various organs, especially the liver, compared to DOTAP/Chol lipoplexes. These results demonstrate the potential for the use of PCSV as gene delivery vehicles for systemic gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Marshall E . Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244–2245.

    Article  CAS  PubMed  Google Scholar 

  2. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413–7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hofland HE, Shephard L, Sullivan SM . Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci USA 1996; 93: 7305–7309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miao CH, Thompson AR, Loeb K, Ye X . Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 2001; 3: 947–957.

    Article  CAS  PubMed  Google Scholar 

  5. Miao CH, Ohashi K, Patijn GA, Meuse L, Ye X, Thompson AR et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1: 522–532.

    Article  CAS  PubMed  Google Scholar 

  6. Ehrhardt A, Xu H, Huang Z, Engler JA, Kay MA . A direct comparison of two nonviral gene therapy vectors for somatic integration: in vivo evaluation of the bacteriophage integrase phiC31 and the Sleeping Beauty transposase. Mol Ther 2005; 11: 695–706.

    Article  CAS  PubMed  Google Scholar 

  7. Nakanishi M, Uchida T, Kim J, Okada Y . Glycoproteins of Sendai virus (HVJ) have a critical ratio for fusion between virus envelopes and cell membranes. Exp Cell Res 1982; 142: 95–101.

    Article  CAS  PubMed  Google Scholar 

  8. Tomasi M, Pasti C, Manfrinato C, Dallocchio F, Bellini T . Peptides derived from the heptad repeat region near the C-terminal of Sendai virus F protein bind the hemagglutinin-neuraminidase ectodomain. FEBS Lett 2003; 536: 56–60.

    Article  CAS  PubMed  Google Scholar 

  9. Hsu MC, Scheidd A, Choppin PW . Fusion of Sendai virus with liposomes: dependence on the viral fusion protein (F) and the lipid composition of liposomes. Virology 1983; 126: 361–369.

    Article  CAS  PubMed  Google Scholar 

  10. Kaneda Y, Saeki Y, Morishita R . Gene therapy using HVJ-liposomes: the best of both worlds? Mol Med Today 1999; 5: 298–303.

    Article  CAS  PubMed  Google Scholar 

  11. Hirano T, Fujimoto J, Ueki T, Yamamoto H, Iwasaki T, Morisita R et al. Persistent gene expression in rat liver in vivo by repetitive transfections using HVJ-liposome. Gene Therapy 1998; 5: 459–464.

    Article  CAS  PubMed  Google Scholar 

  12. Tomita M, Morishita R, Higaki J, Tomita S, Aoki M, Ogihara T et al. In vivo gene transfer of insulin gene into neonatal rats by the HVJ-liposome method resulted in sustained transgene expression. Gene Therapy 1996; 3: 477–482.

    CAS  PubMed  Google Scholar 

  13. Dzau VJ, Mann MJ, Morishita R, Kaneda Y . Fusigenic viral liposome for gene therapy in cardiovascular disease. Proc Natl Acad Sci USA 1996; 93: 11421–11425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N et al. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 2002; 6: 219–226.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HS, Park YS . Gene transfection by quantitatively reconstituted Sendai envelope proteins into liposomes. Cancer Gene Ther 2002; 9: 173–177.

    Article  PubMed  Google Scholar 

  16. Tomasi M, Loyter A . Selective extraction of biologically active F-glycoprotein from dithiothreitol reduced Sendai virus particles. FEBS Lett 1981; 131: 381–385.

    Article  CAS  PubMed  Google Scholar 

  17. Bagai S, Puri A, Blumenthal R, Sarkar DP . Hemagglutinin–neuraminidase enhances is F protein-mediated membrane fusion of reconstituted Sendai virus envelopes with cells. J Virol 1993; 67: 3312–3318.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vainstein A, Hershkovitz M, Israel S, Rabin S, Loyter A . A new method for reconstitution of highly fusogenic Sendai virus envelopes. Biochem Biophys Acta 1984; 773: 184–188.

    Article  Google Scholar 

  19. Bitzer M, Lauer U, Baumann C, Spiegel M, Gregor M, Neubert WJ . Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry. J Virol 1997; 71: 5481–5486.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Therapy 2004; 11: 675–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang G, Budker V, Wolff JA . High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735–1737.

    Article  CAS  PubMed  Google Scholar 

  22. Ohlfest JR, Frandsen JL, Fritz S, Lobitz PD, Perkinson SG, Clark KJ et al. Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 2005; 105: 2691–2698.

    Article  CAS  PubMed  Google Scholar 

  23. Held PK, Olivares EC, Aguilar CP, Finegold M, Calos MP, Grompe M . In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther 2005; 11: 399–408.

    Article  CAS  PubMed  Google Scholar 

  24. Takimoto T, Taylor GL, Connaris HC, Crennell SJ, Portner A . Role of hemagglutinin–neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion. J Virol 2002; 76: 13028–13033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rousso I, Mixon MB, Chen BK, Kim PS . Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci USA 2000; 97: 13523–13525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bavari S, Bosio CM, Wiegand E, Ruthel G, Will AB, Geisbert TW et al. Lipid rafts microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 2002; 195: 593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao X, Huang L . Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry 1996; 35: 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  28. Bagai S, Sarkar DP . Fusion-mediated microinjection of lysozyme into HepG2 cells through hemagglutinin neuraminidase-depleted Sendai virus envelopes. J Biol Chem 1994; 269: 1966–1972.

    CAS  PubMed  Google Scholar 

  29. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid–protamine–DNA (LPD) complexes. Gene Therapy 1997; 4: 891–900.

    Article  CAS  PubMed  Google Scholar 

  30. Morishita N, Nakagami H, Morishita R, Takeda S, Mishima F, Terazono B et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005; 334: 1121–1126.

    Article  CAS  PubMed  Google Scholar 

  31. Sorgi FL, Bhattacharya S, Huang L . Protamine sulfate enhances lipid-mediated gene transfer. Gene Therapy 1997; 4: 961–968.

    Article  CAS  PubMed  Google Scholar 

  32. Ramesh R, Saeki T, Templeton NS, Ji L, Stephens LC, Ito I et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther 2001; 3: 337–350.

    Article  CAS  PubMed  Google Scholar 

  33. Uyechi LS, Gagne L, Thurston G, Szoka FC . Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Therapy 2001; 8: 828–836.

    Article  CAS  PubMed  Google Scholar 

  34. Delepine P, Guillaume C, Montier T, Clément JC, Yaouanc JJ, Des Abbayes H et al. Biodistribution study of phosphonolipids: a class of nonviral vectors efficient in mice lung directed gene transfer. J Gene Med 2003; 5: 600–608.

    Article  CAS  PubMed  Google Scholar 

  35. Nchinda G, Zschornig O, Uberla K . Increased non-viral gene transfer levels in mice by concentration of cationic lipid DNA complexes formed under optimized conditions. J Gene Med 2003; 5: 712–722.

    Article  CAS  PubMed  Google Scholar 

  36. Kim SH, Song IH, Kim JC, Kim EJ, Jang DO, Park YS . In vitro and in vivo gene-transferring characteristics of novel cationic lipids, DMKD (O,O′-dimyristyl-N-lysyl aspartate) and DMKE (O,O′-dimyristyl-N-lysyl glutamate). J Control Rel 2005; 115: 234–241.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Korea Research Foundation, 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y S Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Kim, J., Lee, Y. et al. An efficient liposomal gene delivery vehicle using Sendai F/HN proteins and protamine. Cancer Gene Ther 15, 214–224 (2008). https://doi.org/10.1038/sj.cgt.7701121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701121

Keywords

This article is cited by

Search

Quick links