Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

E1A-expressing adenoviral E3B mutants act synergistically with chemotherapeutics in immunocompetent tumor models

Abstract

The majority of clinical trials evaluating replication-selective oncolytic adenoviruses utilized mutants with immunomodulatory E3B genes deleted, likely contributing to the attenuated efficacy. We investigated whether an intact immune response could contribute to the observed improved efficacy in response to combinations with chemotherapeutics. Seven carcinoma cell lines were evaluated by combining viral mutants; dl309 (ΔE3B), dl704 (ΔE3gp19K), dl312 (ΔE1A) or wild-type Ad5 with the commonly used clinical drugs cisplatin and paclitaxel. Synergistic effects on cell death were determined by generation of combination indexes in cultured cells. In vivo tumor growth inhibition was achieved by virotherapy alone and was most efficacious with wild-type virus and least with the ΔE3B mutant. Significantly higher efficacy was observed when the viruses were combined with drugs. The greatest enhancement of tumor inhibition was in combination with the ΔE3B mutant restoring potency to that of Ad5 wild-type levels, observed only in animals with intact immune response. Increases in infectivity, viral gene expression and replication were identified as potential mechanisms contributing to the synergistic effects. Our results suggest that the attenuation of ΔE3B mutants can be overcome by low doses of chemotherapeutics only in the presence of an intact immune response indicating a role for T-cell-mediated functions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB . Mechanisms of Taxol resistance related to microtubules. Oncogene 2003; 22: 7280–7295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siddik ZH . Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22: 7265–7279.

    Article  CAS  PubMed  Google Scholar 

  3. Schoffski P . The modulated oral fluoropyrimidine prodrug S-1, and its use in gastrointestinal cancer and other solid tumors. Anticancer Drugs 2004; 15: 85–106.

    Article  PubMed  Google Scholar 

  4. Chun JH, Kim HK, Kim E, Kang HC, Park JH, Bae JM et al. Increased expression of metallothionein is associated with irinotecan resistance in gastric cancer. Cancer Res 2004; 64: 4703–4706.

    Article  CAS  PubMed  Google Scholar 

  5. Nakano Y, Tanno S, Koizumi K, Nishikawa T, Nakamura K, Minogushi M et al. Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br J Cancer 2007; 96: 457–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 2007; 445: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin E, Nemunaitis J . Oncolytic viral therapies. Cancer Gene Ther 2004; 11: 643–664.

    Article  CAS  PubMed  Google Scholar 

  8. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  9. Ganly I, Kirn D, Eckhardt G, Rodriguez GI, Soutar DS, Otto R et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000; 6: 798–806.

    CAS  PubMed  Google Scholar 

  10. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 1999; 73: 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6: 611–623.

    Article  CAS  PubMed  Google Scholar 

  12. O'Shea CC, Soria C, Bagus B, McCormick F . Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 2005; 8: 61–74.

    Article  CAS  PubMed  Google Scholar 

  13. Reid T, Warren R, Kirn D . Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 2002; 9: 979–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  15. Xia ZJ, Chang JH, Zhang L, Jiang WQ, Guan ZZ, Liu JW et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng 2004; 23: 1666–1670.

    PubMed  Google Scholar 

  16. Wang Y, Hallden G, Hill R, Arnand A, Liu TC, Francis J et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol 2003; 21: 1328–1335.

    Article  CAS  PubMed  Google Scholar 

  17. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  18. Stolarek R, Gomez-Manzano C, Jiang H, Suttle G, Lemoine MG, Fueyo J . Robust infectivity and replication of Delta-24 adenovirus induce cell death in human medulloblastoma. Cancer Gene Ther 2004; 11: 713–720.

    Article  CAS  PubMed  Google Scholar 

  19. DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61: 7464–7472.

    CAS  PubMed  Google Scholar 

  20. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 2006; 14: 107–117.

    Article  CAS  PubMed  Google Scholar 

  21. Ryan PC, Jakubczak JL, Stewart DA, Hawkins LK, Cheng C, Clarke LM et al. Antitumor efficacy and tumor-selective replication with a single intravenous injection of OAS403, an oncolytic adenovirus dependent on two prevalent alterations in human cancer. Cancer Gene Ther 2004; 11: 555–569.

    Article  CAS  PubMed  Google Scholar 

  22. Schepelmann S, Hallenbeck P, Ogilvie LM, Hedley D, Friedlos F, Martin J et al. Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2. Cancer Res 2005; 65: 5003–5008.

    Article  CAS  PubMed  Google Scholar 

  23. Johnson L, Shen A, Boyle L, Kunich J, Pandey K, Lemmon M et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 2002; 1: 325–337.

    Article  CAS  PubMed  Google Scholar 

  24. Yu DC, Chen Y, Dilley J, Li Y, Embry M, Zhang H et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res 2001; 61: 517–525.

    CAS  PubMed  Google Scholar 

  25. Guo W, Zhu H, Zhang L, Davis J, Teraishi F, Roth JA et al. Combination effect of oncolytic adenovirotherapy and TRAIL gene therapy in syngeneic murine breast cancer models. Cancer Gene Ther 2006; 13: 82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alonso MM, Gomez-Manzano C, Jiang H, Bekele NB, Piao Y, Yung WKA et al. Combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy provides enhanced anti-glioma effect in vivo. Cancer Gene Ther 2007; 14: 756–761.

    Article  CAS  PubMed  Google Scholar 

  27. Gomez-Manzano C, Alonso MM, Yung WK, McCormick F, Curiel DT, Lang FF et al. Delta-24 increases the expression and activity of topoisomerase I and enhances the antiglioma effect of irinotecan. Clin Cancer Res 2006; 12: 556–562.

    Article  CAS  PubMed  Google Scholar 

  28. Conrad C, Miller CR, Ji Y, Gomez-Manzano C, Bharara S, McMurrey JS et al. Delta24-hyCD adenovirus suppresses glioma growth in vivo by combining oncolysis and chemosensitization. Cancer Gene Ther 2005; 12: 284–294.

    Article  CAS  PubMed  Google Scholar 

  29. Hallden G, Hill R, Wang Y, Anand A, Liu TC, Lemoine NR et al. Novel immunocompetent murine tumor models for the assessment of replication-competent oncolytic adenovirus efficacy. Mol Ther 2003; 8: 412–424.

    Article  CAS  PubMed  Google Scholar 

  30. Hallden G, Thorne S, Yang J, Kirn DK . Replication-selective oncolytic adenoviruses: methods and protocols. In: Springer C (ed). Suicide Gene Therapy: Methods and Protocols for Cancer. Humana Press: Totowa, NJ, USA, 2003.

    Google Scholar 

  31. Lee WP, Tai DI, Tsai SL, Yeh CT, Chao Y, Lee SD et al. Adenovirus type 5 E1A sensitizes hepatocellular carcinoma cells to gemcitabine. Cancer Res 2003; 63: 6229–6236.

    CAS  PubMed  Google Scholar 

  32. Liao Y, Zou YY, Xia WY, Hung MC . Enhanced paclitaxel cytotoxicity and prolonged animal survival rate by a nonviral-mediated systemic delivery of E1A gene in orthotopic xenograft human breast cancer. Cancer Gene Ther 2004; 11: 594–602.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Z, Jia SF, Hung MC, Kleinerman ES . E1A sensitizes HER2/neu-overexpressing Ewing's sarcoma cells to topoisomerase II-targeting anticancer drugs. Cancer Res 2001; 61: 3394–3398.

    CAS  PubMed  Google Scholar 

  34. Mullins DW, Burger CJ, Elgert KD . Paclitaxel enhances macrophage IL-12 production in tumor-bearing hosts through nitric oxide. J Immunol 1999; 162: 6811–6818.

    CAS  PubMed  Google Scholar 

  35. Bhushan A, Kupperman JL, Stone JE, Kimberley PJ, Calman NS, Hacker MP et al. Drug resistance results in alterations in expression of immune recognition molecules and failure to express Fas (CD95). Immunol Cell Biol 1998; 76: 350–356.

    Article  CAS  PubMed  Google Scholar 

  36. Shishodia S, Sodhi A, Shrivastava A . Involvement of Ras and MAP kinase (ERK-1) in cisplatin-induced activation of murine bone marrow-derived macrophages. Biochem Mol Biol Int 1998; 45: 527–534.

    CAS  PubMed  Google Scholar 

  37. Lanni JS, Lowe SW, Licitra EJ, Liu JO, Jacks T . p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc Natl Acad Sci USA 1997; 94: 9679–9683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schneider-Brachert W, Tchikov V, Merkel O, Jakob M, Hallas C, Kruse ML et al. Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J Clin Invest 2006; 116: 2901–2913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Paolo NC, Tuve S, Ni S, Hellstrom KE, Hellstrom I, Lieber A . Effect of adenovirus-mediated heat shock protein expression and oncolysis in combination with low-dose cyclophosphamide treatment on antitumor immune responses. Cancer Res 2006; 66: 960–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lamfers ML, Fulci G, Gianni D, Tang Y, Kurozumi K, Kaur B et al. Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging. Mol Ther 2006; 14: 779–788.

    Article  CAS  PubMed  Google Scholar 

  41. Miura TA, Morris K, Ryan S, Cook JL, Routes JM . Adenovirus E1A, not human papillomavirus E7, sensitizes tumor cells to lysis by macrophages through nitric oxide- and TNF-alpha-dependent mechanisms despite up-regulation of 70-kDa heat shock protein. J Immunol 2003; 170: 4119–4126.

    Article  CAS  PubMed  Google Scholar 

  42. Cook JL, Miura TA, Ikle DN, Lewis Jr AM, Routes JM . E1A oncogene-induced sensitization of human tumor cells to innate immune defenses and chemotherapy-induced apoptosis in vitro and in vivo. Cancer Res 2003; 63: 3435–3443.

    CAS  PubMed  Google Scholar 

  43. Routes JM, Ryan S, Clase A, Miura T, Kuhl A, Potter TA et al. Adenovirus E1A oncogene expression in tumor cells enhances killing by TNF-related apoptosis-inducing ligand (TRAIL). J Immunol 2000; 165: 4522–4527.

    Article  CAS  PubMed  Google Scholar 

  44. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    Article  CAS  PubMed  Google Scholar 

  45. Hortobagyi GN, Ueno NT, Xia W, Zhang S, Wolf JK, Putnam JB et al. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 2001; 19: 3422–3433.

    Article  CAS  PubMed  Google Scholar 

  46. Madhusudan S, Tamir A, Bates N, Flanagan E, Gore ME, Barton DP et al. A multicenter phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res 2004; 10: 2986–2996.

    Article  CAS  PubMed  Google Scholar 

  47. Liao Y, Hung MC . Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis. Mol Cell Biol 2003; 23: 6836–6848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frisch SM, Mymryk JS . Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 2002; 3: 441–452.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Gary Martin (CRUK, London, UK) and colleagues at Clare Hall for excellent experimental assistance and Jennelle Francis (Molecular Oncology Unit) for production and characterization of all viral mutants. We also wish to thank Lynda Hawkins, Patricia Ryan and Jingping Yang (GTI-Novartis, Gaithersburg, MD) for helpful and insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Halldén.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheong, S., Wang, Y., Meng, JH. et al. E1A-expressing adenoviral E3B mutants act synergistically with chemotherapeutics in immunocompetent tumor models. Cancer Gene Ther 15, 40–50 (2008). https://doi.org/10.1038/sj.cgt.7701099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701099

Keywords

  • adenovirus
  • combination therapy
  • cytotoxic
  • synergy
  • immune response

This article is cited by

Search

Quick links