Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy

Abstract

Despite setbacks in the past and apparent hurdles ahead, gene therapy is advancing toward reality. The past several years have witnessed this new field of biomedicine developing rapidly both in breadth and depth, especially for the treatment of cancer, thanks largely to the better understanding of molecular and genetic basis of oncogenesis and the development of new and improved vectors and technologies for gene delivery and targeting. This article is intended to provide a brief review of recent advances in cancer gene therapy using adenoviruses, both as vectors and as oncolytic agents, and some of the recent progress in the development of immunotoxins for use in cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

AAV:

adeno-associated viruses

Ad:

adenovirus

AFP:

alpha-fetal protein

APC:

antigen presenting cell

ASO:

antisense oligonucleotides

BBB:

blood–brain barrier

BMP:

bone morphogenetic protein

CAR:

coxsackie-Ad receptor

CEA:

carcinoembryonic antigen

CLL:

chronic lymphocytic leukemia

CR:

complete remission

CRAd:

conditionally replicative Ad

DC:

dendritic cell

dsFV:

disulfide-stabilized Fv

DT:

diphtheria toxin

EGFR:

epidermal growth factor receptor

GBM:

glioblastoma multiforme

GM-CSF:

granulocyte macrophage-colony stimulating factor

HCC:

hepatocellular carcinoma

HCL:

hairy cell leukemia

HNSCC:

head and neck squamous cell carcinoma

HSV-TK:

herpes simplex virus-thymidine kinase

hTERT:

human telomerase

IL:

interleukin

LV:

lentiviral

NPC:

nasopharyngeal cancer

PE:

pseudomonas exotoxin

pK:

polylysine

PKR:

protein kinase R

pRb:

retinoblastoma protein

pIX:

protein IX

RGD:

Arg-Gly-Asp

rIT:

recombinant immunotoxin

RNAi:

RNA interference

scFv:

single-chain fragment variable

SFDA:

State Food and Drug Administration

SFV:

semliki forest virus

siRNA:

small interfering RNA

shRNA:

short hairpin RNA

v.p.u.:

viral particle unit

References

  1. Edelstein ML, Abedi MR, Wixon J, Edelstein RM . Gene therapy clinical trials worldwide 1989-2004-an overview. J Gene Med 2004; 6: 597–602.

    PubMed  Google Scholar 

  2. Roth JA, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996; 2: 985–991.

    CAS  PubMed  Google Scholar 

  3. Peng Z . Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16: 1016–1027.

    CAS  PubMed  Google Scholar 

  4. Guan YS, Liu Y, Sun L, Li X, He Q . Successful management of postoperative recurrence of hepatocellular carcinoma with p53 gene therapy combining transcatheter arterial chemoembolization. World J Gastroenterol 2005; 11: 3803–3805.

    PubMed  PubMed Central  Google Scholar 

  5. Hilleman MR, Werner JH . Recovery of new agent from patients with acute respiratory illness. Proc Soc Exp Biol Med 54; 85: 183–188.

    CAS  PubMed  Google Scholar 

  6. Barraza EM, Ludwig SL, Gaydos JC, Brundage JF . Reemergence of adenovirus type 4 acute respiratory disease in military trainees: report of an outbreak during a lapse in vaccination. J Infect Dis 1999; 179: 1531–1533.

    CAS  PubMed  Google Scholar 

  7. McNeill KM, Hendrix RM, Lindner JL, Benton FR, Monteith SC, Tuchscherer MA et al. Large, persistent epidemic of adenovirus type 4-associated acute respiratory infection in US army trainees. Emerg Infect Dis 1999; 5: 798–801.

    Google Scholar 

  8. Rubin R, Rorke LB . Adenovirus. Vaccines, 2nd edn. WB Sanders: Philadelphia, PA, 1994: 475–502.

    Google Scholar 

  9. http://www.oralcancerfoundation.org/news/story.asp?newsId=1033.

  10. Alba R, Bosch A, Chillon M . Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 2005; 12: S18–27.

    CAS  PubMed  Google Scholar 

  11. Chiocca EA . Oncolytic viruses. Nat Rev Cancer 2002; 2: 938–950.

    PubMed  Google Scholar 

  12. Chu RL, Post DE, Khuri FR, Van Meir EG . Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2004; 10: 5299–5312.

    CAS  PubMed  Google Scholar 

  13. Johannes L, Decaudin D . Protein toxins: intracellular trafficking for targeted therapy. Gene Ther 2005; 12: 1360–1368.

    CAS  PubMed  Google Scholar 

  14. Kreitman RJ . Immunotoxins. Expert Opin Pharmacother 2000; 1: 1117–1129.

    CAS  PubMed  Google Scholar 

  15. Parato KA, Senger D, Forsyth PA, Bell JC . Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 2005; 5: 965–976.

    CAS  PubMed  Google Scholar 

  16. Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ . Immunotoxin therapy of cancer. Nat Rev Cancer 2006; 6: 559–565.

    CAS  PubMed  Google Scholar 

  17. Seth P . Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther 2005; 4: 512–517.

    CAS  PubMed  Google Scholar 

  18. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    CAS  PubMed  Google Scholar 

  19. Verma IM, Weitzman MD . Gene therapy: twenty-first century medicine. Ann Rev Biochem 2005; 74: 711–738.

    CAS  PubMed  Google Scholar 

  20. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    CAS  PubMed  Google Scholar 

  21. Stewart PL, Fuller SD, Burnett RM . Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 1993; 12: 2589–2599.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    CAS  PubMed  Google Scholar 

  23. Flinterman M, Gaken J, Farzaneh F, Tavassoli M . E1A-mediated suppression of EGFR expression and induction of apoptosis in head and neck squamous carcinoma cell lines. Oncogene 2003; 22: 1965–1977.

    CAS  PubMed  Google Scholar 

  24. Breyer B, Jiang W, Cheng H, Zhou L, Paul R, Feng T, et al. Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther 2001; 1: 149–162.

    CAS  PubMed  Google Scholar 

  25. Green NK, Seymour LW . Adenoviral vectors: systemic delivery and tumor targeting. Cancer Gene Ther 2002; 9: 1036–1042.

    CAS  PubMed  Google Scholar 

  26. Wu Q, Moyana T, Xiang J . Cancer gene therapy by adenovirus-mediated gene transfer. Curr Gene Ther 2001; 1: 101–122.

    CAS  PubMed  Google Scholar 

  27. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    CAS  PubMed  Google Scholar 

  28. Koehler DR, Frndova H, Leung K, Louca E, Palmer D, Ng P et al. Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J Gene Med 2005; 7: 1409–1420.

    CAS  PubMed  Google Scholar 

  29. Koehler DR, Martin B, Corey M, Palmer D, Ng P, Tanswell AK et al. Readministration of helper-dependent adenovirus to mouse lung. Gene Ther 2006; 13: 773–780.

    CAS  PubMed  Google Scholar 

  30. Guan M, Rodriguez-Madoz JR, Alzuguren P, Gomar C, Kramer MG, Kochanek S et al. Increased efficacy and safety in the treatment of experimental liver cancer with a novel adenovirus-alphavirus hybrid vector. Cancer Res 2006; 66: 1620–1629.

    CAS  PubMed  Google Scholar 

  31. Chen JP, Chen L, Leek J, Lin C . Antisense c-myc fragments induce normal differentiation cycles in HL-60 cells. Eur J Clin Investig 2006; 36: 49–57.

    CAS  Google Scholar 

  32. Zhang B, Liu XX, Zhang Y, Jiang CY, Teng QS, Hu HY et al. Adenovirus-mediated expression of both antisense ODC and AdoMetDC inhibited colorectal cancer cell growth in vitro. Acta Pharmacol Sinica 2006; 27: 353–359.

    CAS  Google Scholar 

  33. Tong AW, Zhang YA, Nemunaitis J . Small interfering RNA for experimental cancer therapy. Curr Opin Mol Ther 2005; 7: 114–124.

    CAS  PubMed  Google Scholar 

  34. Ogorelkova M, Zwaagstra J, Elahi SM, Dias C, Guilbaut C, Lo R et al. Adenovirus-delivered antisense RNA and shRNA exhibit different silencing efficiencies for the endogenous transforming growth factor-beta (TGF-beta) type II receptor. Oligonucleotides 2006; 16: 2–14.

    CAS  PubMed  Google Scholar 

  35. Burgert HG, Kvist S . An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 1985; 41: 987–997.

    CAS  PubMed  Google Scholar 

  36. Andersson M, Paabo S, Nilsson T, Peterson PA . Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 1985; 43: 215–222.

    CAS  PubMed  Google Scholar 

  37. Liu M, Acres B, Balloul JM, Bizouarne N, Paul S, Slos P et al. Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci USA 2004; 101: 14567–14571.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dunn GP, Old LJ, Schreiber RD . The three Es of cancer immunoediting. Ann Rev Immunol 2004; 22: 329–360.

    CAS  Google Scholar 

  39. Basak SK, Kiertscher SM, Harui A, Roth MD . Modifying adenoviral vectors for use as gene-based cancer vaccines. Viral Immunol 2004; 17: 182–196.

    CAS  PubMed  Google Scholar 

  40. Li CY, Huang Q, Kung HF . Cytokine and immuno-gene therapy for solid tumors. Cell Mol Immunol 2005; 2: 81–91.

    CAS  PubMed  Google Scholar 

  41. Wang X, Wang JP, Rao XM, Price JE, Zhou HS, Lachman LB . Prime-boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu+ metastatic breast cancer in mice. Breast Cancer Res 2005; 7: R580–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu S, Wang H, Yang Z, Kon T, Zhu J, Cao Y et al. Enhancement of cancer radiation therapy by use of adenovirus-mediated secretable glucose-regulated protein 94/gp96 expression. Cancer Res 2005; 65: 9126–9131.

    CAS  PubMed  Google Scholar 

  43. Elzey BD, Siemens DR, Ratliff TL, Lubaroff DM . Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors. Int J Cancer 2001; 94: 842–849.

    CAS  PubMed  Google Scholar 

  44. Tang Y, Zhang L, Yuan J, Akbulut H, Maynard J, Linton PJ et al. Multistep process through which adenoviral vector vaccine overcomes anergy to tumor-associated antigens. Blood 2004; 104: 2704–2713.

    CAS  PubMed  Google Scholar 

  45. Gallo P, Dharmapuri S, Cipriani B, Monaci P . Adenovirus as vehicle for anticancer genetic immunotherapy. Gene Ther 2005; 12: S84–S91.

    CAS  PubMed  Google Scholar 

  46. Frolkis M, Fischer MB, Wang Z, Lebkowski JS, Chiu CP, Majumdar AS . Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors. Cancer Gene Ther 2003; 10: 239–249.

    CAS  PubMed  Google Scholar 

  47. van Leeuwen EB, Cloosen S, Senden-Gijsbers BL, Agervig Tarp M, Mandel U, Clausen H et al. Expression of aberrantly glycosylated tumor mucin-1 on human DC after transduction with a fiber-modified adenoviral vector. Cytotherapy 2006; 8: 24–35.

    CAS  PubMed  Google Scholar 

  48. Smyth LJ, Elkord E, Taher TE, Jiang HR, Burt DJ, Clayton A et al. CD8 T-cell recognition of human 5T4 oncofetal antigen. Int J Cancer 2006; 119: 1638–1647.

    CAS  PubMed  Google Scholar 

  49. Oh ST, Kim CH, Park MY, Won EH, Sohn HJ, Cho HI et al. Dendritic cells transduced with recombinant adenoviruses induce more efficient anti-tumor immunity than dendritic cells pulsed with peptide. Vaccine 2006; 24: 2860–2868.

    CAS  PubMed  Google Scholar 

  50. Zhao F, Zhou Q, Lu Y, Qin Y, Zhang J, Li J et al. In vitro anti-tumor immune response induced by dendritic cells transfected with recombinant adenovirus carrying mutant K-ras genes. Journal of Huazhong University of Science and Technology. Med Sci 2005; 25: 378–381.

    CAS  Google Scholar 

  51. Chen Z, Huang H, Chang T, Carlsen S, Saxena A, Marr R et al. Enhanced HER-2/neu-specific antitumor immunity by cotransduction of mouse dendritic cells with two genes encoding HER-2/neu and alpha tumor necrosis factor. Cancer Gene Ther 2002; 9: 778–786.

    CAS  PubMed  Google Scholar 

  52. Wiethe C, Dittmar K, Doan T, Lindenmaier W, Tindle R . Provision of 4-1BB ligand enhances effector and memory CTL responses generated by immunization with dendritic cells expressing a human tumor-associated antigen. J Immunol 2003; 170: 2912–2922.

    CAS  PubMed  Google Scholar 

  53. Okada N, Iiyama S, Okada Y, Mizuguchi H, Hayakawa T, Nakagawa S et al. Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther 2005; 12: 72–83.

    CAS  PubMed  Google Scholar 

  54. Ojima T, Iwahashi M, Nakamura M, Matsuda K, Naka T, Nakamori M et al. The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen. Int J Oncol 2006; 28: 947–953.

    CAS  PubMed  Google Scholar 

  55. Xia D, Moyana T, Xiang J . Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res 2006; 16: 241–259.

    CAS  PubMed  Google Scholar 

  56. Noureddini SC, Curiel DT . Genetic targeting strategies for adenovirus. Mol Pharmacol 2005; 2: 341–347.

    CAS  Google Scholar 

  57. Wu H, Seki T, Dmitriev I, Uil T, Kashentseva E, Han T et al. Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Hum Gene Ther 2002; 13: 1647–1653.

    CAS  PubMed  Google Scholar 

  58. Mahasreshti PJ, Kataram M, Wu H, Yalavarthy LP, Carey D, Fisher PB et al. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecol Oncol 2006; 100: 521–532.

    CAS  PubMed  Google Scholar 

  59. Magnusson MK, Hong SS, Boulanger P, Lindholm L . Genetic retargeting of adenovirus: novel strategy employing ‘deknobbing’ of the fiber. J Virol 2001; 75: 7280–7289.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL et al. Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol 2003; 77: 11367–11377.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schagen FH, Wensveen FM, Carette JE, Dermody TS, Gerritsen WR, van Beusechem VW . Genetic targeting of adenovirus vectors using a reovirus sigma1-based attachment protein. Mol Ther 2006; 13: 997–1005.

    CAS  PubMed  Google Scholar 

  62. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res 2002; 8: 275–280.

    CAS  PubMed  Google Scholar 

  63. Borovjagin AV, Krendelchtchikov A, Ramesh N, Yu DC, Douglas JT, Curiel DT . Complex mosaicism is a novel approach to infectivity enhancement of adenovirus type 5-based vectors. Cancer Gene Ther 2005; 12: 475–486.

    CAS  PubMed  Google Scholar 

  64. Einfeld DA, Brough DE, Roelvink PW, Kovesdi I, Wickham TJ . Construction of a pseudoreceptor that mediates transduction by adenoviruses expressing a ligand in fiber or penton base. J Virol 1999; 73: 9130–9136.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 2001; 75: 11284–11291.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Koizumi N, Mizuguchi H, Sakurai F, Yamaguchi T, Watanabe Y, Hayakawa T . Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and alphav integrin-binding ablation. J Virol 2003; 77: 13062–13072.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rosa-Calatrava M, Grave L, Puvion-Dutilleul F, Chatton B, Kedinger C . Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol 2001; 75: 7131–7141.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dmitriev IP, Kashentseva EA, Curiel DT . Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76: 6893–6899.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vellinga J, Rabelink MJ, Cramer SJ, van den Wollenberg DJ, Van der Meulen H, Leppard KN et al. Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 2004; 78: 3470–3479.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Everts M, Curiel DT . Transductional targeting of adenoviral cancer gene therapy. Curr Gene Ther 2004; 4: 337–346.

    CAS  PubMed  Google Scholar 

  71. Ebbinghaus C, Al-Jaibaji A, Operschall E, Schoffel A, Peter I, Greber UF et al. Functional and selective targeting of adenovirus to high-affinity Fcgamma receptor I-positive cells by using a bispecific hybrid adapter. J Virol 2001; 75: 480–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kashentseva EA, Seki T, Curiel DT, Dmitriev IP . Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 2002; 62: 609–616.

    CAS  PubMed  Google Scholar 

  73. Nettelbeck DM, Rivera AA, Kupsch J, Dieckmann D, Douglas JT, Kontermann RE et al. Retargeting of adenoviral infection to melanoma: combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. Int J Cancer 2004; 108: 136–145.

    CAS  PubMed  Google Scholar 

  74. Guinn BA, Norris JS, Farzaneh F, Deisseroth AB . International Society for Cell and Gene Therapy of Cancer: 2005 meeting in Shenzhen, China. Cancer Gene Ther 2006; 14: 128–138.

    PubMed  Google Scholar 

  75. Tang YHT, Everts M, Zhu ZB, Gillespie GY, Curiel DT, Wu H . Directing Adenovirus across the blood brain barrier via melanotransferrin (P97) transcytosis pathway in an in vitro model. Gene Ther 2006; 14: 523–532.

    PubMed  Google Scholar 

  76. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen Y, Luk KD, Cheung KM, Lu WW, An XM, Ng SS et al. Combination of adeno-associated virus and adenovirus vectors expressing bone morphogenetic protein-2 produces enhanced osteogenic activity in immunocompetent rats. Biochem Biophys Res Commun 2004; 317: 675–681.

    CAS  PubMed  Google Scholar 

  78. Guinn BA, Norris JS, Huang L, Farzaneh F, Kasahara N, Deisseroth AB . International Society for Cell and Gene Therapy of Cancer (ISCGT) annual meeting: conference overview and introduction to the symposium papers. Cancer Immunol Immunother 2006; 55: 1406–1411.

    PubMed  Google Scholar 

  79. Makower D, Rozenblit A, Kaufman H, Edelman M, Lane ME, Zwiebel J et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res 2003; 9: 693–702.

    PubMed  Google Scholar 

  80. Galanis E, Okuno SH, Nascimento AG, Lewis BD, Lee RA, Oliviera AM et al. Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther 2005; 12: 437–445.

    CAS  PubMed  Google Scholar 

  81. Reid TR, Freeman S, Post L, McCormick F, Sze DY . Effects of Onyx-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther 2005; 12: 673–681.

    CAS  PubMed  Google Scholar 

  82. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 2006; 14: 107–117.

    CAS  PubMed  Google Scholar 

  83. Su C, Peng L, Sham J, Wang X, Zhang Q, Chua D et al. Immune gene-viral therapy with triplex efficacy mediated by oncolytic adenovirus carrying an interferon-gamma gene yields efficient antitumor activity in immunodeficient and immunocompetent mice. Mol Ther 2006; 13: 918–927.

    CAS  PubMed  Google Scholar 

  84. Freytag SO, Stricker H, Pegg J, Paielli D, Pradhan DG, Peabody J et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63: 7497–7506.

    CAS  PubMed  Google Scholar 

  85. Liu Y, Deisseroth A . Oncolytic adenoviral vector carrying the cytosine deaminase gene for melanoma gene therapy. Cancer Gene Ther 2006; 13: 845–855.

    CAS  PubMed  Google Scholar 

  86. Li GC, Yang JM, Nie MM, Su CG, Sun LC, Qian YZ et al. Potent antitumoral effects of a novel gene-viral therapeutic system CNHK300-mEndostatin in hepatocellular carcinoma. Chin Med J (Engl) 2005; 118: 179–185.

    CAS  Google Scholar 

  87. Chen G, Zhou J, Gao Q, Huang X, Li K, Zhuang L et al. Oncolytic adenovirus-mediated transfer of the antisense chk2 selectively inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 2006; 13: 930–939.

    CAS  PubMed  Google Scholar 

  88. Zhang YA, Nemunaitis J, Samuel SK, Chen P, Shen Y, Tong AW . Antitumor activity of an oncolytic adenovirus-delivered oncogene small interfering RNA. Cancer Res 2006; 66: 9736–9743.

    CAS  PubMed  Google Scholar 

  89. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R . A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

  90. van der Poel HG, Molenaar B, van Beusechem VW, Haisma HJ, Rodriguez R, Curiel DT et al. Epidermal growth factor receptor targeting of replication competent adenovirus enhances cytotoxicity in bladder cancer. J Urol 2002; 168: 266–272.

    CAS  PubMed  Google Scholar 

  91. van Beusechem VW, Mastenbroek DC, van den Doel PB, Lamfers ML, Grill J, Wurdinger T et al. Conditionally replicative adenovirus expressing a targeting adapter molecule exhibits enhanced oncolytic potency on CAR-deficient tumors. Gene Ther 2003; 10: 1982–1991.

    CAS  PubMed  Google Scholar 

  92. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    CAS  PubMed  Google Scholar 

  93. Huang DC, Cory S, Strasser A . Bcl-2, Bcl-XL and adenovirus protein E1B19kD are functionally equivalent in their ability to inhibit cell death. Oncogene 1997; 14: 405–414.

    CAS  PubMed  Google Scholar 

  94. Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM . Binding and modulation of p53 by p300/CBP coactivators. Nature 1997; 387: 823–827.

    CAS  PubMed  Google Scholar 

  95. O'Shea CC, Soria C, Bagus B, McCormick F . Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 2005; 8: 61–74.

    CAS  PubMed  Google Scholar 

  96. Cathomen T, Weitzman MD . A functional complex of adenovirus proteins E1B-55kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J Virol 2000; 74: 11407–11412.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    CAS  PubMed  Google Scholar 

  98. Geoerger B, van Beusechem VW, Opolon P, Morizet J, Laudani L, Lecluse Y et al. Expression of p53, or targeting towards EGFR, enhances the oncolytic potency of conditionally replicative adenovirus against neuroblastoma. J Gene Med 2005; 7: 584–594.

    CAS  PubMed  Google Scholar 

  99. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 1999; 73: 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. O'Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6: 611–623.

    CAS  PubMed  Google Scholar 

  101. Dix BR, O'Carroll SJ, Myers CJ, Edwards SJ, Braithwaite AW . Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53. Cancer Res 2000; 60: 2666–2672.

    CAS  PubMed  Google Scholar 

  102. van Beusechem VW, van den Doel PB, Grill J, Pinedo HM, Gerritsen WR . Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res 2002; 62: 6165–6171.

    CAS  PubMed  Google Scholar 

  103. Shen Y, Kitzes G, Nye JA, Fattaey A, Hermiston T . Analyses of single-amino-acid substitution mutants of adenovirus type 5 E1B-55K protein. J Virol 2001; 75: 4297–4307.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ramachandra M, Rahman A, Zou A, Vaillancourt M, Howe JA, Antelman D et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol 2001; 19: 1035–1041.

    CAS  PubMed  Google Scholar 

  105. Li Y, Yu DC, Chen Y, Amin P, Xhang H, Nguyen N et al. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res 2001; 61: 6428–6436.

    CAS  PubMed  Google Scholar 

  106. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–2563.

    CAS  PubMed  Google Scholar 

  107. Irving J, Wang Z, Powell S, O'Sullivan C, Mok M, Murphy B et al. Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity. Cancer Gene Ther 2004; 11: 174–185.

    CAS  PubMed  Google Scholar 

  108. DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61: 7464–7472.

    CAS  PubMed  Google Scholar 

  109. Cheng WS, Dzojic H, Nilsson B, Totterman TH, Essand M . An oncolytic conditionally replicating adenovirus for hormone-dependent and hormone-independent prostate cancer. Cancer Gene Ther 2006; 13: 13–20.

    CAS  PubMed  Google Scholar 

  110. Yoon TK, Shichinohe T, Laquerre S, Kasahara N . Selectively replicating adenoviruses for oncolytic therapy. Curr Cancer Drug Targets. 2001; 1: 85–107.

    CAS  PubMed  Google Scholar 

  111. Witlox AM, Van Beusechem VW, Molenaar B, Bras H, Schaap GR, Alemany R et al. Conditionally replicative adenovirus with tropism expanded towards integrins inhibits osteosarcoma tumor growth in vitro and in vivo. Clin Cancer Res 2004; 10: 61–67.

    CAS  PubMed  Google Scholar 

  112. Hedley SJ, Chen J, Mountz JD, Li J, Curiel DT, Korokhov N et al. Targeted and shielded adenovectors for cancer therapy. Cancer Immunol Immunother 2006; 55: 1412–1419.

    CAS  PubMed  Google Scholar 

  113. Carette JE, Overmeer RM, Schagen FH, Alemany R, Barski OA, Gerritsen WR et al. Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. Cancer Res 2004; 64: 2663–2667.

    CAS  PubMed  Google Scholar 

  114. Heideman DA, Steenbergen RD, van der Torre J, Scheffner M, Alemany R, Gerritsen WR et al. Oncolytic adenovirus expressing a p53 variant resistant to degradation by HPV E6 protein exhibits potent and selective replication in cervical cancer. Mol Ther 2005; 12: 1083–1090.

    CAS  PubMed  Google Scholar 

  115. van Beusechem VW, van den Doel PB, Gerritsen WR . Conditionally replicative adenovirus expressing degradation-resistant p53 for enhanced oncolysis of human cancer cells overexpressing murine double minute 2. Mol Cancer Ther 2005; 4: 1013–1018.

    CAS  PubMed  Google Scholar 

  116. Rustamzadeh E, Low WC, Vallera DA, Hall WA . Immunotoxin therapy for CNS tumor. J Neurooncol 2003; 64: 101–116.

    PubMed  Google Scholar 

  117. Hall WA, Fodstad O . Immunotoxins and central nervous system neoplasia. J Neurosurg 1992; 76: 1–12.

    CAS  PubMed  Google Scholar 

  118. Ghetie V, Vitetta ES . Chemical construction of immunotoxins. Mol Biotechnol 2001; 18: 251–268.

    CAS  PubMed  Google Scholar 

  119. Kreitman RJ . Immunotoxins for targeted cancer therapy. AAPS J 2006; 8: E532–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pastan I . Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother 2003; 52: 338–341.

    PubMed  Google Scholar 

  121. Murphy JR, Bishai W, Borowski M, Miyanohara A, Boyd J, Nagle S . Genetic construction, expression, and melanoma-selective cytotoxicity of a diphtheria toxin-related alpha-melanocyte-stimulating hormone fusion protein. Proc Natl Acad Sci USA 1986; 83: 8258–8262.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Brinkmann U, Reiter Y, Jung SH, Lee B, Pastan I . A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci USA 1993; 90: 7538–7542.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. McCarron PA, Olwill SA, Marouf WM, Buick RJ, Walker B, Scott CJ . Antibody conjugates and therapeutic strategies. Mol Interv 2005; 5: 368–380.

    CAS  PubMed  Google Scholar 

  124. Salzberg AA, Dedon PC . DNA bending is a determinant of calicheamicin target recognition. Biochemistry 2000; 39: 7605–7612.

    CAS  PubMed  Google Scholar 

  125. Abutalib SA, Tallman MS . Monoclonal antibodies for the treatment of acute myeloid leukemia. Curr Pharm Biotechnol 2006; 7: 343–369.

    CAS  PubMed  Google Scholar 

  126. Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, FitzGerald DJ et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 2001; 345: 241–247.

    CAS  PubMed  Google Scholar 

  127. Kreitman RJ, Pastan I . BL22 and lymphoid malignancies. Best Pract Res Clin Haematol 2006; 19: 685–699.

    CAS  PubMed  Google Scholar 

  128. Pai-Scherf LH, Villa J, Pearson D, Watson T, Liu E, Willingham MC et al. Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin Cancer Res 1999; 5: 2311–2315.

    CAS  PubMed  Google Scholar 

  129. Kunwar S . Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. Acta Neurochir Suppl 2003; 88: 105–111.

    CAS  PubMed  Google Scholar 

  130. Shimamura T, Husain SR, Puri RK . The IL-4 and IL-13 pseudomonas exotoxins: new hope for brain tumor therapy. Neurosurg Focus 2006; 20: E11.

    PubMed  Google Scholar 

  131. Sampson JH, Akabani G, Archer GE, Bigner DD, Berger MS, Friedman AH et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 2003; 65: 27–35.

    PubMed  Google Scholar 

  132. Bayes M, Rabasseda X, Prous JR . Gateways to clinical trials. Methods Findings Exp Clin Pharmacol 2004; 26: 723–753.

    CAS  Google Scholar 

  133. Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 2000; 18: 1622–1636.

    CAS  PubMed  Google Scholar 

  134. Kreitman RJ . Toxin-labeled monoclonal antibodies. Curr Pharm Biotechnol 2001; 2: 313–325.

    CAS  PubMed  Google Scholar 

  135. Davison AJ, Benko M, Harrach B . Genetic content and evolution of adenoviruses. J Gen Virol 2003; 84: 2895–2908.

    CAS  PubMed  Google Scholar 

  136. McNeish IA, Bell SJ, Lemoine NR . Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Ther 2004; 11: 497–503.

    CAS  PubMed  Google Scholar 

  137. Kaplan JM . Adenovirus-based cancer gene therapy. Curr Gene Ther 2005; 5: 595–605.

    CAS  PubMed  Google Scholar 

  138. Pirollo KF, Rait A, Sleer LS, Chang EH . Antisense therapeutics: from theory to clinical practice. Pharmacol Ther 2003; 99: 55–77.

    CAS  PubMed  Google Scholar 

  139. Harrington KJ, Spitzweg C, Bateman AR, Morris JC, Vile RG . Gene therapy for prostate cancer: current status and future prospects. J Urol 2001; 166: 1220–1233.

    CAS  PubMed  Google Scholar 

  140. Kufe D, Weichselbaum R . Radiation therapy: activation for gene transcription and the development of genetic radiotherapy-therapeutic strategies in oncology. Cancer Biol Ther 2003; 2: 326–329.

    CAS  PubMed  Google Scholar 

  141. Huesker M, Folmer Y, Schneider M, Fulda C, Blum HE, Hafkemeyer P . Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-MDR1 ribozymes. Hepatology 2002; 36: 874–884.

    CAS  PubMed  Google Scholar 

  142. Bonsted A, Engesaeter BO, Hogset A, Maelandsmo GM, Prasmickaite L, D'Oliveira C et al. Photochemically enhanced transduction of polymer-complexed adenovirus targeted to the epidermal growth factor receptor. J Gene Med 2006; 8: 286–297.

    CAS  PubMed  Google Scholar 

  143. Stevenson M, Hale AB, Hale SJ, Green NK, Black G, Fisher KD et al. Incorporation of a laminin-derived peptide (SIKVAV) on polymer-modified adenovirus permits tumor-specific targeting via alpha6-integrins. Cancer Gene Ther 2007; 14: 335–345.

    CAS  PubMed  Google Scholar 

  144. Wang W, Zhu NL, Chua J, Swenson S, Costa FK, Schmitmeier S et al. Retargeting of adenoviral vector using basic fibroblast growth factor ligand for malignant glioma gene therapy. J Neurosurg 2005; 103: 1058–1066.

    CAS  PubMed  Google Scholar 

  145. Hemminki A, Wang M, Hakkarainen T, Desmond RA, Wahlfors J, Curiel DT . Production of an EGFR targeting molecule from a conditionally replicating adenovirus impairs its oncolytic potential. Cancer Gene Ther 2003; 10: 583–588.

    CAS  PubMed  Google Scholar 

  146. Shayakhmetov DM, Li ZY, Ni S, Lieber A . Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Res 2002; 62: 1063–1068.

    CAS  PubMed  Google Scholar 

  147. Tollefson AE, Scaria A, Hermiston TW, Ryerse JS, Wold LJ, Wold WS . The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol 1996; 70: 2296–2306.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Greenfield L, Johnson VG, Youle RJ . Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science 1987; 238: 536–539.

    CAS  PubMed  Google Scholar 

  149. Siegall CB . Targeted toxins as anticancer agents. Cancer 1994; 74: 1006–1012.

    CAS  PubMed  Google Scholar 

  150. Thompson J, Hu H, Scharff J, Neville Jr DM . An anti-CD3 single-chain immunotoxin with a truncated diphtheria toxin avoids inhibition by pre-existing antibodies in human blood. J Biol Chem 1995; 270: 28037–28041.

    CAS  PubMed  Google Scholar 

  151. Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK . Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 2000; 6: 2157–2165.

    CAS  PubMed  Google Scholar 

  152. Debinski W, Pastan I . An immunotoxin with increased activity and homogeneity produced by reducing the number of lysine residues in recombinant Pseudomonas exotoxin. Bioconjug Chem 1994; 5: 40–46.

    CAS  PubMed  Google Scholar 

  153. Sandvig K, van Deurs B . Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J 2000; 19: 5943–5950.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wagner PL, Acheson DW, Waldor MK . Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect Immun 2001; 69: 1934–1937.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Olsnes S, Sandvig K . How protein toxins enter and kill cells. Cancer Treat Res 1988; 37: 39–73.

    CAS  PubMed  Google Scholar 

  156. Sivam G, Pearson JW, Bohn W, Oldham RK, Sadoff JC, Morgan Jr AC . Immunotoxins to a human melanoma-associated antigen: comparison of gelonin with ricin and other A chain conjugates. Cancer Res 1987; 47: 3169–3173.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HLQ is supported in part by grants from National ‘973’ Key Research Program and NSFC of China. BG is supported by Leukaemia Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B-A Guinn or L Q Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Wang, H., Zhao, J. et al. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 14, 599–615 (2007). https://doi.org/10.1038/sj.cgt.7701054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701054

Keywords

This article is cited by

Search

Quick links