Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytosine deaminase/5-fluorocytosine gene therapy and Apo2L/TRAIL cooperate to kill TRAIL-resistant tumor cells

Abstract

The death ligand Apo2L/TRAIL (Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand) eradicates many tumor types while sparing most normal tissues. However, some tumors are resistant to TRAIL. We therefore determined if TRAIL cooperates with cytosine deaminase/5-fluorocytosine (CD/5-FC) gene therapy and investigated the mechanisms involved. Transfection of human LAN-5 neuroblastoma cells with CD rendered the cells (LAN-5-CD) sensitive to 5-FC-induced, caspase-dependent apoptosis. Mediated by caspase-3, CD/5-FC and TRAIL cooperated to induce apoptosis in these TRAIL-resistant cells and to cleave X-linked inhibitor of apoptosis protein (XIAP). In established LAN-5-CD tumors growing subcutaneously in mice, intratumorally applied TRAIL did not decrease tumor growth and systemically administered 5-FC only attenuated tumor growth. In contrast, 5-FC together with TRAIL dramatically decreased tumor growth and eradicated a tumor. Assuming sufficient gene transfer of CD in situ, CD/5-FC with TRAIL may be useful for the therapy of tumors resistant to TRAIL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ganten TM, Koschny R, Sykora J, Schulze-Bergkamen H, Buchler P, Haas TL et al. Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 2006; 12: 2640–2646.

    Article  CAS  PubMed  Google Scholar 

  2. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271: 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001; 7: 383–385.

    Article  CAS  PubMed  Google Scholar 

  6. Almasan A, Ashkenazi A . Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 2003; 14: 337–348.

    Article  CAS  PubMed  Google Scholar 

  7. Walczak H, Krammer PH . The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000; 256: 58–66.

    Article  CAS  PubMed  Google Scholar 

  8. Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001; 276: 46639–46646.

    Article  CAS  PubMed  Google Scholar 

  9. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388: 190–195.

    Article  CAS  PubMed  Google Scholar 

  10. Krueger A, Baumann S, Krammer PH, Kirchhoff S . FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 2001; 21: 8247–8254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharp DA, Lawrence DA, Ashkenazi A . Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem 2005; 280: 11949–19401.

    Article  Google Scholar 

  12. Ganten TM, Haas TL, Sykora J, Stahl H, Sprick MR, Fas SC et al. Enhanced caspase-8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by chemotherapeutic drugs. Cell Death Differ 2004; 11 (Suppl 1): S86–S96.

    Article  CAS  PubMed  Google Scholar 

  13. Roth W, Reed JC . FLIP protein and TRAIL-induced apoptosis. Vitam Horm 2004; 67: 189–206.

    Article  CAS  PubMed  Google Scholar 

  14. Walczak H, Bouchon A, Stahl H, Krammer PH . Tumor necrosis factor-related apoptosis-inducing ligand retains its apoptosis-inducing capacity on Bcl-2- or Bcl-xL-overexpressing chemotherapy-resistant tumor cells. Cancer Res 2000; 60: 3051–3057.

    CAS  PubMed  Google Scholar 

  15. Hinz S, Trauzold A, Boenicke L, Sandberg C, Beckmann S, Bayer E et al. Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 2000; 19: 5477–5486.

    Article  CAS  PubMed  Google Scholar 

  16. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC . Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 1999; 18: 5242–5251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morizane Y, Honda R, Fukami K, Yasuda H . X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem (Tokyo) 2005; 137: 125–132.

    Article  CAS  Google Scholar 

  18. Suzuki Y, Nakabayashi Y, Takahashi R . Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 2001; 98: 8662–8667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang XD, Zhang XY, Gray CP, Nguyen T, Hersey P . Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res 2001; 61: 7339–7348.

    CAS  PubMed  Google Scholar 

  20. Du C, Fang M, Li Y, Li L, Wang X . Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Article  CAS  PubMed  Google Scholar 

  21. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    Article  CAS  PubMed  Google Scholar 

  22. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000; 6: 1796–1803.

    CAS  PubMed  Google Scholar 

  23. Ng CP, Bonavida B . X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol Cancer Ther 2002; 1: 1051–1058.

    CAS  PubMed  Google Scholar 

  24. Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC . Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 2004; 11: 915–923.

    Article  CAS  PubMed  Google Scholar 

  25. Amantana A, London CA, Iversen PL, Devi GR . X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 2004; 3: 699–707.

    CAS  PubMed  Google Scholar 

  26. Muris JJ, Cillessen SA, Vos W, van Houdt IS, Kummer JA, van Krieken JH et al. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas. Blood 2005; 105: 2916–2923.

    Article  CAS  PubMed  Google Scholar 

  27. Eggert A, Grotzer MA, Zuzak TJ, Wiewrodt BR, Ho R, Ikegaki N et al. Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 2001; 61: 1314–1319.

    CAS  PubMed  Google Scholar 

  28. Kim Y, Suh N, Sporn M, Reed JC . An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 2002; 277: 22239–22320.

    Google Scholar 

  29. Shankar S, Srivastava RK . Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 2004; 7: 139–156.

    Article  CAS  PubMed  Google Scholar 

  30. Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenee WK, Huang HJ . Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 2000; 60: 847–853.

    CAS  PubMed  Google Scholar 

  31. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S . Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 1999; 59: 734–741.

    CAS  PubMed  Google Scholar 

  32. Mizutani Y, Nakanishi H, Yoshida O, Fukushima M, Bonavida B, Miki T . Potentiation of the sensitivity of renal cell carcinoma cells to TRAIL-mediated apoptosis by subtoxic concentrations of 5-fluorouracil. Eur J Cancer 2002; 38: 167–176.

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto T, Nagano H, Sakon M, Wada H, Eguchi H, Kondo M et al. Partial contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL receptor pathway to antitumor effects of interferon-alpha/5-fluorouracil against hepatocellular carcinoma. Clin Cancer Res 2004; 10: 7884–7885.

    Article  CAS  PubMed  Google Scholar 

  34. Naka T, Sugamura K, Hylander BL, Widmer MB, Rustum YM, Repasky EA . Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients' colon tumors grown in SCID mice. Cancer Res 2002; 62: 5800–5806.

    CAS  PubMed  Google Scholar 

  35. von Haefen C, Gillissen B, Hemmati PG, Wendt J, Guner D, Mrozek A et al. Multidomain Bcl-2 homolog Bax but not Bak mediates synergistic induction of apoptosis by TRAIL and 5-FU through the mitochondrial apoptosis pathway. Oncogene 2004; 23: 8320–8332.

    Article  CAS  PubMed  Google Scholar 

  36. Galligan L, Longley DB, McEwan M, Wilson TR, McLaughlin K, Johnston PG . Chemotherapy and TRAIL-mediated colon cancer cell death: the roles of p53, TRAIL receptors, and c-FLIP. Mol Cancer Ther 2005; 4: 2026–2036.

    Article  CAS  PubMed  Google Scholar 

  37. Huber BE, Austin EA, Richards CA, Davis ST, Good SS . Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91: 8302–8306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang ZH, Samuels S, Gama Sosa MA, Kolodny EH . 5-Fluorocytosine-mediated apoptosis and DNA damage in glioma cells engineered to express cytosine deaminase and their enhancement with interferon. J Neurooncol 1998; 36: 219–229.

    Article  CAS  PubMed  Google Scholar 

  39. Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM . Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 2005; 24: 1231–1243.

    Article  CAS  PubMed  Google Scholar 

  40. Rowley S, Lindauer M, Gebert JF, Haberkorn U, Oberdorfer F, Moebius U et al. Cytosine deaminase gene as a potential tool for the genetic therapy of colorectal cancer. J Surg Oncol 1996; 61: 42–48.

    Article  CAS  PubMed  Google Scholar 

  41. Denizot F, Lang R . Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986; 89: 271–277.

    Article  CAS  PubMed  Google Scholar 

  42. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139: 271–279.

    Article  CAS  PubMed  Google Scholar 

  43. Lightcap ES, McCormack TA, Pien CS, Chau V, Adams J, Elliott PJ . Proteasome inhibition measurements: clinical application. Clin Chem 2000; 46: 673–683.

    CAS  PubMed  Google Scholar 

  44. Maedler K, Fontana A, Ris F, Sergeev P, Toso C, Oberholzer J et al. FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. Proc Natl Acad Sci USA 2002; 99: 8236–8241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haggard ME, Cangir A, Ragab AH, Komp D, Falletta J, Humphrey GB . 5-Fluorouracil in childhood solid tumors. Cancer Treat Rep 1977; 61: 69–71.

    CAS  PubMed  Google Scholar 

  47. Makino S, Kashii A, Kanazawa K, Tsuchida Y . Effects of newly introduced chemotherapeutic agents on a cytogenetically highly malignant neuroblastoma, xenotransplanted in nude mice. J Pediatr Surg 1993; 28: 612–616.

    Article  CAS  PubMed  Google Scholar 

  48. Fulda S, Honer M, Menke-Moellers I, Berthold F . Antiproliferative potential of cytostatic drugs on neuroblastoma cells in vitro. Eur J Cancer 1995; 31A: 616–621.

    Article  CAS  PubMed  Google Scholar 

  49. Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ et al. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res 2001; 61: 6185–6193.

    CAS  PubMed  Google Scholar 

  50. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC . Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 1999; 18: 5242–5251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muhlethaler-Mottet A, Bourloud KB, Auderset K, Joseph JM, Gross N . Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-complemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl-xL and RIP. Oncogene 2004; 23: 5415–5425.

    Article  PubMed  Google Scholar 

  52. Fukazawa T, Fujiwara T, Uno F, Teraishi F, Kadowaki Y, Itoshima T et al. Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells. Oncogene 2001; 20: 5225–5231.

    Article  CAS  PubMed  Google Scholar 

  53. Kaliberov SA, Chiz S, Kaliberova LN, Krendelchtchikova V, Della Manna D, Zhou T et al. Combination of cytosine deaminase suicide gene expression with DR5 antibody treatment increases cancer cell cytotoxicity. Cancer Gene Ther 2006; 13: 203–214.

    Article  CAS  PubMed  Google Scholar 

  54. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6: 529–535.

    Article  CAS  PubMed  Google Scholar 

  55. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N . Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 2000; 60: 4315–4319.

    CAS  PubMed  Google Scholar 

  56. Fulda S, Wick W, Weller M, Debatin KM . Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.

    Article  CAS  PubMed  Google Scholar 

  57. Cui H, Li T, Ding HF . Linking of N-Myc to death receptor machinery in neuroblastoma cells. J Biol Chem 2005; 280: 9474–9481.

    Article  CAS  PubMed  Google Scholar 

  58. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 2000; 408: 1004–1008.

    Article  CAS  PubMed  Google Scholar 

  59. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112–116.

    Article  CAS  PubMed  Google Scholar 

  60. Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002; 21: 3704–3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S, Wang Y et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 1997; 272: 11855–18542.

    Article  Google Scholar 

  62. Erbs P, Regulier E, Kintz J, Leroy P, Poitevin Y, Exinger F et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res 2000; 60: 3813–3822.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Schwab for LAN-5 cells, R Reisfeld for NXS2 cells, H Bujard for the pUHD 10-1vector, P Krammer for FLIPL antibody, HR Rodewald for a breeding colony of RAG2−/−/cγ−/− mice and advice on their properties, and W Uckert for discussion. This work has been supported by grants to CB and KMD from the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Beltinger.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (htttp://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Wahl, J., Knauss, H. et al. Cytosine deaminase/5-fluorocytosine gene therapy and Apo2L/TRAIL cooperate to kill TRAIL-resistant tumor cells. Cancer Gene Ther 14, 640–651 (2007). https://doi.org/10.1038/sj.cgt.7701051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701051

Keywords

Search

Quick links