Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA × anti-CD3 diabodies from lentivirally transduced human lymphocytes

Abstract

Infiltrating T lymphocytes are found in many malignancies, but they appear to be mostly anergic and do not attack the tumor, presumably because of defective T-cell activation events. Recently, we described a strategy for the tumor-specific polyclonal activation of tumor-resident T lymphocytes based on the in situ production of recombinant bispecific antibodies (bsAbs) by transfected nonhematological cell lines. Here, we have constructed a novel HIV-1-based lentiviral vector for efficient gene transduction into various human hematopoietic cell types. Several myelomonocytic and lymphocytic cell lines secreted the anti-carcinoembryonic antigen (CEA) × anti-CD3 diabody in a functionally active form with CD3+ T-cell lines being the most efficient secretors. Furthermore, primary human peripheral blood lymphocytes (PBLs) were also efficiently transduced and secreted high levels of functional diabody. Importantly gene-modified PBLs significantly reduced in vivo tumor growth rates in xenograft studies. These results demonstrate, for the first time, the utility of lentiviral vectors for sustained expression of recombinant bsAbs in human T lymphocytes. Such T lymphocytes, transduced ex vivo to secrete the activating diabody in autocrine fashion, may provide a promising route for a gene therapy strategy for solid human tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ockert D, Schmitz M, Hampl M, Rieber EP . Advances in cancer immunotherapy. Immunol Today 1999; 20: 63–65.

    Article  CAS  PubMed  Google Scholar 

  2. Ferrone S, Marincola FM . Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 1995; 16: 487–494.

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez-Vallina L, Hawkins RE . Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur J Immunol 1996; 26: 2304–2309.

    Article  CAS  PubMed  Google Scholar 

  4. Segal DM, Weiner GJ, Weiner LM . Bispecific antibodies in cancer therapy. Curr Opin Immunol 1999; 11: 558–562.

    Article  CAS  PubMed  Google Scholar 

  5. Sanz L, Blanco B, Alvarez-Vallina L . Antibodies and gene therapy: teaching old ‘magic bullets’ new tricks. Trends Immunol 2004; 25: 85–91.

    Article  CAS  PubMed  Google Scholar 

  6. Holliger P, Hudson PJ . Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23: 1126–1136.

    Article  CAS  PubMed  Google Scholar 

  7. Blanco B, Holliger P, Vile RG, Alvarez-Vallina L . Induction of human T lymphocyte cytotoxicity and inhibition of tumor growth by tumor-specific diabody-based molecules secreted from gene-modified bystander cells. J Immunol 2003; 171: 1070–1077.

    Article  CAS  PubMed  Google Scholar 

  8. Holliger P, Manzke O, Span M, Hawkins R, Fleischmann B, Qinghua L et al. Carcinoembryonic antigen (CEA)-specific T-cell activation in colon carcinoma induced by anti-CD3 × anti-CEA bispecific diabodies and B7 × anti-CEA bispecific fusion proteins. Cancer Res 1999; 59: 2909–2916.

    CAS  PubMed  Google Scholar 

  9. Coleman HM, Brierley I, Stevenson PG . An internal ribosome entry site directs translation of the murine gammaherpesvirus 68 MK3 open reading frame. J Virol 2003; 77: 13093–13105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haas DL, Case SS, Crooks GM, Kohn DB . Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors. Mol Ther 2000; 2: 71–80.

    Article  CAS  PubMed  Google Scholar 

  11. Afanasieva TA, Wittmer M, Vitaliti A, Ajmo M, Neri D, Klemenz R . Single-chain antibody and its derivatives directed against vascular endothelial growth factor: application for antiangiogenic gene therapy. Gene Ther 2003; 10: 1850–1859.

    Article  CAS  PubMed  Google Scholar 

  12. Sanz L, Kristensen P, Blanco B, Facteau S, Russell SJ, Winter G et al. Single-chain antibody-based gene therapy: inhibition of tumor growth by in situ production of phage-derived human antibody fragments blocking functionally active sites of cell-associated matrices. Gene Therapy 2002; 9: 1049–1053.

    Article  CAS  PubMed  Google Scholar 

  13. Ailles LE, Naldini L . HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol 2002; 261: 31–52.

    CAS  PubMed  Google Scholar 

  14. Lu X, Humeau L, Slepushkin V, Binder G, Yu Q, Slepushkina T et al. Safe two-plasmid production for the first clinical lentivirus vector that achieves >99% transduction in primary cells using a one-step protocol. J Gene Med 2004; 6: 963–973.

    Article  CAS  PubMed  Google Scholar 

  15. Schlegel R, Tralka TS, Willingham MC, Pastan I . Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site? Cell 1983; 32: 639–646.

    Article  CAS  PubMed  Google Scholar 

  16. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS . High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 1996; 70: 2581–2585.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  18. Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M . Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci USA 1996; 93: 15266–15271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hefta LJ, Chen FS, Ronk M, Sauter SL, Sarin V, Oikawa S et al. Expression of carcinoembryonic antigen and its predicted immunoglobulin-like domains in HeLa cells for epitope analysis. Cancer Res 1992; 52: 5647–5655.

    CAS  PubMed  Google Scholar 

  20. Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J . Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 1996; 24: 406–415.

    CAS  PubMed  Google Scholar 

  21. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Larcher F, Del Rio M, Serrano F, Segovia JC, Ramirez A, Meana A et al. A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin-targeted keratinocyte grafts. FASEB J 2001; 15: 1529–1538.

    Article  CAS  PubMed  Google Scholar 

  23. Sanchez-Arevalo LV, Cuesta AM, Sanz L, Compte M, Garcia P, Prieto J et al. Enhanced antiangiogenic therapy with antibody-collagen XVIII NC1 domain fusion proteins engineered to exploit matrix remodeling events. Int J Cancer 2006; 119: 455–462.

    Article  Google Scholar 

  24. Blanco B, Holliger P, Alvarez-Vallina L . Autocrine costimulation: tumor-specific CD28-mediated costimulation of T cells by in situ production of a bifunctional B7-anti-CEA diabody fusion protein. Cancer Gene Therapy 2002; 9: 275–281.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eduardo Martinez-Naves (Universidad Complutense de Madrid), Rosario de Pablo (Hospital Universitario Puerta de Hierro) and Didier Trono (University of Geneva) for providing reagents, and Isabel Millán (Hospital Universitario Puerta de Hierro) for statistical analysis. This work was supported by grants from the Fondo de Investigación Sanitaria (02/1144), the Comunidad Autónoma de Madrid (GR/SAL/0214/2004) and the Ministerio de Educación y Ciencia (BIO2005-04794) to LA-V. BB was supported by a Comunidad Autónoma de Madrid training grant 01/0369/2000. LS is investigator from the Ramon y Cajal Program (Ministerio de Educación y Ciencia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Álvarez-Vallina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compte, M., Blanco, B., Serrano, F. et al. Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA × anti-CD3 diabodies from lentivirally transduced human lymphocytes. Cancer Gene Ther 14, 380–388 (2007). https://doi.org/10.1038/sj.cgt.7701021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701021

Keywords

This article is cited by

Search

Quick links