Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting of products of genes to tumor sites using adoptively transferred A-NK and T-LAK cells

Abstract

Despite successes in animals, cytokine gene expression selectively in human tumors is difficult to achieve owing to lack of efficient delivery methods. Since interleukin (IL)-2-activated natural killer (A-NK) and phytohemagglutinin and IL-2 activated killer T (T-LAK) cells, as previously demonstrated, localize and accumulate in murine lung tumor metastases following adoptive transfer, we transduced them to test their ability to deliver products of genes selectively to tumors. Assessments of transduction efficiency in vitro demonstrated that adenoviral transduction consistently resulted in high (>60%) transduction rates and substantial expression of transgenes such as GFP, Red2, luciferase, β-galactosidase and mIL-12 for at least 4 days. In vivo experiments illustrated that Ad-GFP transduced A-NK and Ad-Red2 (RFP) transduced T-LAK or mIL-12 transduced A-NK cells localized 10–50-fold more or survived significantly better than mock transduced cells, respectively, within lung metastases than in the surrounding normal lung tissue. Most importantly, mIL-12 transduced A-NK cells provided a significantly greater antitumor response than non-transduced A-NK cells. Thus, adoptive transfer of A-NK and T-LAK cells represents an efficient method for targeting products of genes to tumor sites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 6
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tasaki K, Yoshida Y, Miyauchi M, Maeda T, Takenaga K, Kouzu T et al. Transduction of murine colon carcinoma cells with interleukin-15 gene induces antitumor effects in immunocompetent and immunocompromised hosts. Cancer Gene Ther 2000; 7: 255–261.

    Article  CAS  PubMed  Google Scholar 

  2. Nagai H, Hara I, Horikawa T, Oka M, Kamidono S, Ichihashi M . Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumor growth through inhibition of tumor vessel formation. J Invest Dermatol 2002; 119: 541–548.

    Article  CAS  PubMed  Google Scholar 

  3. Lasek W, Basak G, Switaj T, Jakubowska AB, Wysocki PJ, Mackiewicz A et al. Complete tumour regressions induced by vaccination with IL-12 gene-transduced tumour cells in combination with IL-15 in a melanoma model in mice. Cancer Immunol Immunother 2004; 53: 363–372.

    Article  CAS  PubMed  Google Scholar 

  4. Tasaki K, Tagawa M, Gunji Y, Matsubara H, Takenaga K, Muramatsu M et al. Inhibition of experimental lung metastasis of murine colon carcinoma cells depends on the amount of interleukin-2 secreted from the transduced cells. Anticancer Res 1998; 18: 813–817.

    CAS  PubMed  Google Scholar 

  5. Slos P, De Meyer M, Leroy P, Rousseau C, Acres B . Immunotherapy of established tumors in mice by intratumoral injection of an adenovirus vector harboring the human IL-2 cDNA: induction of CD8(+) T-cell immunity and NK activity. Cancer Gene Ther 2001; 8: 321–332.

    Article  CAS  PubMed  Google Scholar 

  6. Hwang KS, Cho WK, Yoo J, Seong YR, Kim BK, Kim S et al. Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity. Cancer Gene Ther 2004; 11: 397–407.

    Article  CAS  PubMed  Google Scholar 

  7. Kanno H, Hattori S, Sato H, Murata H, Huang FH, Hayashi A et al. Experimental gene therapy against subcutaneously implanted glioma with a herpes simplex virus-defective vector expressing interferon-gamma. Cancer Gene Ther 1999; 6: 147–154.

    Article  CAS  PubMed  Google Scholar 

  8. Bubenik J, Voitenok NN, Kieler J, Prassolov VS, Chumakov PM, Bubenikova D et al. Local administration of cells containing an inserted IL-2 gene and producing IL-2 inhibits growth of human tumours in nu/nu mice. Immunol Lett 1988; 19: 279–282.

    Article  CAS  PubMed  Google Scholar 

  9. Duda DG, Sunamura M, Lozonschi L, Kodama T, Egawa S, Matsumoto G et al. Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res 2000; 60: 1111–1116.

    CAS  PubMed  Google Scholar 

  10. Ryuke Y, Mizuno M, Natsume A, Suzuki O, Nobayashi M, Kageshita T et al. Growth inhibition of subcutaneous mouse melanoma and induction of natural killer cells by liposome-mediated interferon-beta gene therapy. Melanoma Res 2003; 13: 349–356.

    Article  CAS  PubMed  Google Scholar 

  11. Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H . Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res 1999; 59: 4035–4041.

    CAS  PubMed  Google Scholar 

  12. Satoh Y, Esche C, Gambotto A, Shurin GV, Yurkovetsky ZR, Robbins PD et al. Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2002; 2: 337–349.

    Article  CAS  PubMed  Google Scholar 

  13. Halin C, Gafner V, Villani ME, Borsi L, Berndt A, Kosmehl H et al. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res 2003; 63: 3202–3210.

    CAS  PubMed  Google Scholar 

  14. Bauerschmitz GJ, Kanerva A, Wang M, Hermann I, Shaw DR, Strong TV et al. Evaluation of a selectively oncolytic adenovirus for local and systemic treatment of cervical cancer. Int J Cancer 2004; 111: 303–309.

    Article  CAS  PubMed  Google Scholar 

  15. Sakurai F, Terada T, Maruyama M, Watanabe Y, Yamashita F, Takakura Y et al. Therapeutic effect of intravenous delivery of lipoplexes containing the interferon-beta gene and poly I: poly C in a murine lung metastasis model. Cancer Gene Ther 2003; 10: 661–668.

    Article  CAS  PubMed  Google Scholar 

  16. Basse P, Herberman RB, Nannmark U, Johansson BR, Hokland M, Wasserman K et al. Accumulation of adoptively transferred adherent, lymphokine-activated killer cells in murine metastases. J Exp Med 1991; 174: 479–488.

    Article  CAS  PubMed  Google Scholar 

  17. Kjaergaard J, Hokland M, Nannmark U, Hokland P, Basse P . Infiltration patterns of short- and long-term cultured A-NK and T-LAK cells following adoptive immunotherapy. Scand J Immunol 1998; 47: 532–540.

    Article  CAS  PubMed  Google Scholar 

  18. Yeh P, Perricaudet M . Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J 1997; 11: 615–623.

    Article  CAS  PubMed  Google Scholar 

  19. Graham FL, van der Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 1973; 52: 456–467.

    Article  CAS  PubMed  Google Scholar 

  20. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 1996; 70: 7498–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wickham TJ, Tzeng E, Shears II LL, Roelvink PW, Li Y, Lee GM et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71: 8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Q, Hokland ME, Bryant JL, Zhang Y, Nannmark U, Watkins SC et al. Tumor-localization by adoptively transferred, interleukin-2-activated NK cells leads to destruction of well-established lung metastases. Int J Cancer 2003; 105: 512–519.

    Article  CAS  PubMed  Google Scholar 

  23. Gunji Y, Vujanovic NL, Hiserodt JC, Herberman RB, Gorelik E . Generation and characterization of purified adherent lymphokine-activated killer cells in mice. J Immunol 1989; 142: 1748–1754.

    CAS  PubMed  Google Scholar 

  24. Gately MK, Desai BB, Wolitzky AG, Quinn PM, Dwyer CM, Podlaski FJ et al. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J Immunol 1991; 147: 874–882.

    CAS  PubMed  Google Scholar 

  25. Perussia B, Chan SH, D'Andrea A, Tsuji K, Santoli D, Pospisil M et al. Natural killer (NK) cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-alpha beta+, TCR-gamma delta+ T lymphocytes, and NK cells. J Immunol 1992; 149: 3495–3502.

    CAS  PubMed  Google Scholar 

  26. Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 1993; 177: 1199–1204.

    Article  CAS  PubMed  Google Scholar 

  27. Manetti R, Gerosa F, Giudizi MG, Biagiotti R, Parronchi P, Piccinni MP et al. Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. J Exp Med 1994; 179: 1273–1283.

    Article  CAS  PubMed  Google Scholar 

  28. Basse PH, Goldfarb RH, Herberman RB, Hokland ME . Accumulation of adoptively transferred A-NK cells in murine metastases: kinetics and role of interleukin-2. In vivo 1994; 8: 17–24.

    CAS  PubMed  Google Scholar 

  29. Kodama T, Takeda K, Shimozato O, Hayakawa Y, Atsuta M, Kobayashi K et al. Perforin-dependent NK cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. Eur J Immunol 1999; 29: 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto W, Osaki T, Okamura H, Robbins PD, Kurimoto M, Nagata S et al. Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas-Fas ligand- and perforin-induced tumor apoptosis, respectively. J Immunol 1999; 163: 583–589.

    CAS  PubMed  Google Scholar 

  31. Arai N, Akamatsu S, Arai S, Toshimori Y, Hanaya T, Tanimoto T et al. Interleukin-18 in combination with IL-2 enhances natural killer cell activity without inducing large amounts of IFN-gamma in vivo. J Interferon Cytokine Res 2000; 20: 217–224.

    Article  CAS  PubMed  Google Scholar 

  32. Carson WE, Yu H, Dierksheide J, Pfeffer K, Bouchard P, Clark R et al. A fatal cytokine-induced systemic inflammatory response reveals a critical role for NK cells. J Immunol 1999; 162: 4943–4951.

    CAS  PubMed  Google Scholar 

  33. Carson WE, Dierksheide JE, Jabbour S, Anghelina M, Bouchard P, Ku G et al. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-gamma production and STAT-mediated signal transduction. Blood 2000; 96: 1465–1473.

    CAS  PubMed  Google Scholar 

  34. Osaki T, Peron JM, Cai Q, Okamura H, Robbins PD, Kurimoto M et al. IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma- and IL-12-independent antitumor effects. J Immunol 1998; 160: 1742–1749.

    CAS  PubMed  Google Scholar 

  35. Harrington KJ, Bateman AR, Melcher AA, Ahmed A, Vile RG . Cancer gene therapy: Part 1. Vector development and regulation of gene expression. Clin Oncol (R Coll Radiol) 2002; 14: 3–16.

    Article  Google Scholar 

  36. Kovesdi I, Brough DE, Bruder JT, Wickham TJ . Adenoviral vectors for gene transfer. Curr Opin Biotechnol 1997; 8: 583–589.

    Article  CAS  PubMed  Google Scholar 

  37. Guo ZS, Wang LH, Eisensmith RC, Woo SL . Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Therapy 1996; 3: 802–810.

    CAS  PubMed  Google Scholar 

  38. Smith JS, Keller JR, Lohrey NC, McCauslin CS, Ortiz M, Cowan K et al. Redirected infection of directly biotinylated recombinant adenovirus vectors through cell surface receptors and antigens. Proc Natl Acad Sci USA 1999; 96: 8855–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schleef RR, Olman MA, Miles LA, Chuang JL . Modulating the fibrinolytic system of peripheral blood mononuclear cells with adenovirus. Hum Gene Ther 2001; 12: 439–445.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Z, Ahonen M, Hamalainen H, Bergelson JM, Kahari VM, Lahesmaa R . High-efficiency gene transfer to primary T lymphocytes by recombinant adenovirus vectors. J Immunol Methods 2002; 260: 79–89.

    Article  CAS  PubMed  Google Scholar 

  41. Kjaergaard J, Hokland ME, Agger R, Skovbo A, Nannmark U, Basse PH . Biodistribution and tumor localization of lymphokine-activated killer T cells following different routes of administration into tumor-bearing animals. Cancer Immunol Immunother 2000; 48: 550–560.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the US-NIH (Grants No. R01CA104560 and RO1CA87672) and the American Cancer Society (Grant No. RPG-00-221-01-CDD). We thank Ms Patricia Rice and Mrs. Lisa Bailey for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P H Basse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goding, S., Yang, Q., Mi, Z. et al. Targeting of products of genes to tumor sites using adoptively transferred A-NK and T-LAK cells. Cancer Gene Ther 14, 441–450 (2007). https://doi.org/10.1038/sj.cgt.7701019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701019

Keywords

This article is cited by

Search

Quick links