Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant Bik expression mediated by the enhanced minimal topoisomerase IIα promoter selectively suppressed breast tumors in an animal model

Abstract

To ensure the success of systemic gene therapy, it is critical to enhance the tumor specificity and activity of the promoter. In the current study, we determined that topoisomerase IIα promoter is selectively activated in breast cancer cells. An element containing an inverted CCAAT box (ICB) was shown to be responsible for the breast cancer specificity. When the ICB-harboring topoisomerase IIα minimal promoter was linked with an enhancer sequence from the cytomegalovirus immediate early gene promoter (CMV promoter), this composite promoter, CT90, exhibited activity comparable to or higher than the CMV promoter in breast cancer cells in vitro and in vivo, yet expresses much lower activity in normal cell lines and normal organs than the CMV promoter. A CT90-driven construct expressing BikDD, a potent proapoptotic gene, was shown to selectively kill breast cancer cells in vitro, and to suppress mammary tumor development in an animal model of intravenously administrated, liposome-delivered gene therapy. Expression of BikDD was readily detectable in the tumors but not in the normal organs (such as heart) of CT90-BikDD-treated animals. The results indicate that liposomal CT90-BikDD is an effective systemic breast cancer-targeting gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 2
Figure 3
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Weir HK, Thun MJ, Hankey BF, Ries LA, Howe HL, Winngo PA et al. Annual report to the nation on the status of cancer, 1975–2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst 2003; 95: 1276–1299.

    Article  Google Scholar 

  2. Rouse J, Jackson SP . Interfaces between the detection, signaling, and repair of DNA damage. Science 2002; 297: 547–551.

    Article  CAS  Google Scholar 

  3. Kolodner RD, Putnam CD, Myung K . Maintenance of genome stability in Saccharomyces cerevisiae. Science 2002; 297: 552–557.

    Article  CAS  Google Scholar 

  4. Maser RS, DePinho RA . Connecting chromosomes, crisis, and cancer. Science 2002; 297: 565–569.

    Article  CAS  Google Scholar 

  5. Hortobagyi GN, Ueno NT, Xia W, Zhang S, Wolf JK, Putnam JB et al. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol 2001; 19: 3422–3433.

    Article  CAS  Google Scholar 

  6. Ueno NT, Bartholomeusz C, Xia W, Anklesaria P, Bruckheimer EM, Mebel E et al. Systemic gene therapy in human xenograft tumor models by liposomal delivery of the E1A gene. Cancer Res 2002; 62: 6712–6716.

    CAS  PubMed  Google Scholar 

  7. Yoo GH, Hung MC, Lopez-Berestein G, LaFollete S, Ensley JF, Carey M et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res 2001; 7: 1237–1245.

    CAS  PubMed  Google Scholar 

  8. Dummer R, Bergh J, Karlsson Y, Horowitz JA, Mulder NH, Huinink DTB et al. Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors. Cancer Gene Ther 2000; 7: 1069–1076.

    Article  CAS  Google Scholar 

  9. Pandha HS, Martin LA, Rigg A, Hurst HC, Stamp GW, Sikora K et al. Genetic prodrug activation therapy for breast cancer: a phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol 1999; 17: 2180–2189.

    Article  CAS  Google Scholar 

  10. Saukkonen K, Hemminki A . Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther 2004; 4: 683–696.

    Article  CAS  Google Scholar 

  11. Brand K, Loser P, Arnold W, Bartels T, Strauss M . Tumor cell-specific transgene expression prevents liver toxicity of the adeno-HSVtk/GCV approach. Gene Therapy 1998; 5: 1363–1371.

    Article  CAS  Google Scholar 

  12. Ikegami S, Tadakuma T, Ono T, Suzuki S, Yoshimura I, Asano T et al. Treatment efficiency of a suicide gene therapy using prostate-specific membrane antigen promoter/enhancer in a castrated mouse model of prostate cancer. Cancer Sci 2004; 95: 367–370.

    Article  CAS  Google Scholar 

  13. Haviv YS, Curiel DT . Conditional gene targeting for cancer gene therapy. Adv Drug Deliv Rev 2001; 53: 135–154.

    Article  CAS  Google Scholar 

  14. Lu H, Zhang Y, Roberts DD, Osborne CK, Templeton NS . Enhanced gene expression in breast cancer cells in vitro and tumors in vivo. Mol Ther 2002; 6: 783–792.

    Article  CAS  Google Scholar 

  15. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN . Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 1997; 15: 647–652.

    Article  CAS  Google Scholar 

  16. Barron LG, Szoka Jr FC . The perplexing delivery mechanism of lipoplexes. In: Huang L, Hung MC, Wagner E (eds). Non-viral Vectors for Gene Therapy. Academic Press: San Diego, CA, 1999, pp 229–266.

    Chapter  Google Scholar 

  17. Li S, Rizzo MA, Bhattacharya S, Huang L . Characterization of cationic lipid–protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Therapy 1998; 5: 930–937.

    Article  CAS  Google Scholar 

  18. Zou Y, Peng H, Zhou B, Wen Y, Wang SC, Tsai EM et al. Systemic tumor suppression by the proapoptotic gene bik. Cancer Res 2002; 62: 8–12.

    CAS  PubMed  Google Scholar 

  19. Anderson LM, Krotz S, Weitzman SA, Thimmapaya B . Breast cancer-specific expression of the Candida albicans cytosine deaminase gene using a transcriptional targeting approach. Cancer Gene Ther 2000; 7: 845–852.

    Article  CAS  Google Scholar 

  20. Katabi MM, Chan HL, Karp SE, Batist G . Hexokinase type II: a novel tumor-specific promoter for gene-targeted therapy differentially expressed and regulated in human cancer cells. Hum Gene Ther 1999; 10: 155–164.

    Article  CAS  Google Scholar 

  21. Lin T, Huang X, Gu J, Zhang L, Roth JA, Xiong M et al. Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 2002; 21: 8020–8028.

    Article  CAS  Google Scholar 

  22. Hung MC, Hortobagyi GN, Ueno NT . Development of clinical trial of E1A gene therapy targeting HER-2/neu-overexpressing breast and ovarian cancer. Adv Exp Med Biol 2000; 465: 171–180.

    Article  CAS  Google Scholar 

  23. Adachi N, Nomoto M, Kohno K, Koyama H . Cell-cycle regulation of the DNA topoisomerase IIalpha promoter is mediated by proximal CCAAT boxes: possible involvement of acetylation. Gene 2000; 245: 49–57.

    Article  CAS  Google Scholar 

  24. Falck J, Jensen PB, Sehested M . Evidence for repressional role of an inverted CCAAT box in cell cycle-dependent transcription of the human DNA topoisomerase IIalpha gene. J Biol Chem 1999; 274: 18753–18758.

    Article  CAS  Google Scholar 

  25. Hochhauser D, Stanway CA, Harris AL, Hickson ID . Cloning and characterization of the 5′-flanking region of the human topoisomerase II alpha gene. J Biol Chem 1992; 267: 18961–18965.

    CAS  PubMed  Google Scholar 

  26. Li YM, Wen Y, Zhou BP, Kuo HP, Ding Q, Hung MC . Enhancement of Bik antitumor effect by Bik mutants. Cancer Res 2003; 63: 7630–7633.

    CAS  PubMed  Google Scholar 

  27. Kurachi S, Hitomi Y, Furukawa M, Kurachi K . Role of intron I in expression of the human factor IX gene. J Biol Chem 1995; 270: 5276–5281.

    Article  CAS  Google Scholar 

  28. Xu X, Lotan R . Nonisotopic in situ hybridization for the detection of nuclear retinoid receptor transcripts in tissue sections. Methods Mol Biol 1998; 89: 233–246.

    CAS  PubMed  Google Scholar 

  29. Sitzmann J, Noben-Trauth K, Kamano H, Klempnauer KH . Expression of B-Myb during mouse embryogenesis. Oncogene 1996; 12: 1889–1894.

    CAS  PubMed  Google Scholar 

  30. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 2003; 100: 10393–10398.

    Article  CAS  Google Scholar 

  31. van ’t Veer LJ, Dai H, van de Vijver MJ, He JD, Hart AA, Bernards R et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    Article  Google Scholar 

  32. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  Google Scholar 

  33. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009.

    Article  CAS  Google Scholar 

  34. Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH et al. Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 1999; 59: 5464–5470.

    CAS  PubMed  Google Scholar 

  35. Leerkes MR, Caballero OL, Mackay A, Torloni H, O'Hare MJ, Simpson AJ et al. In silico comparison of the transcriptome derived from purified normal breast cells and breast tumor cell lines reveals candidate upregulated genes in breast tumor cells. Genomics 2002; 79: 257–265.

    Article  CAS  Google Scholar 

  36. Castagnetta LA, Agostara B, Montalto G, Polito L, Campisi I, Saetta A et al. Local estrogen formation by nontumoral, cirrhotic, and malignant human liver tissues and cells. Cancer Res 2003; 63: 5041–5045.

    CAS  PubMed  Google Scholar 

  37. Woessner RD, Mattern MR, Mirabelli CK, Johnson RK, Drake FH . Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ 1991; 2: 209–214.

    CAS  PubMed  Google Scholar 

  38. Vermeulen K, Van Bockstaele DR, Berneman ZN . The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36: 131–149.

    Article  CAS  Google Scholar 

  39. van den Heuvel S, Harlow E . Distinct roles for cyclin-dependent kinases in cell cycle control. Science 1993; 262: 2050–2054.

    Article  CAS  Google Scholar 

  40. Xu L, Daly T, Gao C, Flotte TR, Song S, Byrne BJ et al. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther 2001; 12: 563–573.

    Article  CAS  Google Scholar 

  41. Yi Y, Hahm SH, Lee KH . Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther 2005; 5: 25–35.

    Article  CAS  Google Scholar 

  42. Marshall E . Gene therapy. Viral vectors still pack surprises. Science 2001; 294: 1640.

    Article  CAS  Google Scholar 

  43. Yun J, Chae HD, Choi TS, Kim EH, Bang YJ, Chung J et al. Cdk2-dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53–p21 signaling pathway. J Biol Chem 2003; 278: 36966–36972.

    Article  CAS  Google Scholar 

  44. Joshi AA, Wu Z, Reed RF, Suttle DP . Nuclear factor-Y binding to the topoisomerase IIalpha promoter is inhibited by both the p53 tumor suppressor and anticancer drugs. Mol Pharmacol 2003; 63: 359–367.

    Article  CAS  Google Scholar 

  45. Mendoza N, Fong S, Marsters J, Koeppen H, Schwall R, Wickramasinghe D . Selective cyclin-dependent kinase 2/cyclin A antagonists that differ from ATP site inhibitors block tumor growth. Cancer Res 2003; 63: 1020–1024.

    CAS  PubMed  Google Scholar 

  46. Chen YN, Sharma SK, Ramsey TM, Jiang L, Martin MS, Baker K et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci USA 1999; 96: 4325–4329.

    Article  CAS  Google Scholar 

  47. Baillie CT, Winslet MC, Bradley NJ . Tumour vasculature – a potential therapeutic target. Br J Cancer 1995; 72: 257–267.

    Article  CAS  Google Scholar 

  48. Kan Z, Ivancev K, Lunderquist A, McCuskey PA, McCuskey RS, Wallace S . In vivo microscopy of hepatic tumors in animal models: a dynamic investigation of blood supply to hepatic metastases. Radiology 1993; 187: 621–626.

    Article  CAS  Google Scholar 

  49. Liotta LA, Saidel MG, Kleinerman J . The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 1976; 36: 889–894.

    CAS  PubMed  Google Scholar 

  50. Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 1998; 101: 1401–1413.

    Article  CAS  Google Scholar 

  51. McLean JW, Thurston G, McDonald DM . Sites of uptake and expression of cationic liposome/DNA complexes injected intravenously. In: Huang L, Hung M-C, Wagner E (eds). Nonviral Vectors for Gene Therapy. Academic Press: San Diego, CA, 1999, pp 120–134.

    Google Scholar 

  52. Boyd JM, Gallo GJ, Elangovan B, Houghton AB, Malstrom S, Avery BJ et al. Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 1995; 11: 1921–1928.

    CAS  PubMed  Google Scholar 

  53. Han J, Sabbatini P, White E . Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with E1B 19K. Mol Cell Biol 1996; 16: 5857–5864.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Chu-Li Weng for the technical assistance. C-PD is an awardee of Department of Defense Breast Cancer Research Project Training Grant. K-M Rau is a visiting scientist from Chang Gung Memorial Hospital, Kaohsiung Hsien, Taiwan. This work was supported by Susan G Komen Breast Cancer Foundation Research Grant, US Army Breast Cancer Research Program Center of Excellence, Breast Cancer Research Foundation and MDACC Cancer Center Supporting Grant (CA16672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-C Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, CP., Rau, KM., Qiu, L. et al. Mutant Bik expression mediated by the enhanced minimal topoisomerase IIα promoter selectively suppressed breast tumors in an animal model. Cancer Gene Ther 13, 706–719 (2006). https://doi.org/10.1038/sj.cgt.7700945

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700945

Keywords

This article is cited by

Search

Quick links