Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inducible nitric oxide synthase activity is essential for inhibition of prostatic tumor growth by interferon-β gene therapy

Abstract

We have previously reported that adenoviral vector-mediated interferon (IFN)-β gene therapy inhibits orthotopic growth of human prostate cancer cells in nude mice. The purpose of this study was to determine efficacy and mechanisms of this therapy in immune-competent mice. TRAMP-C2Re3 mouse prostate cancer cells infected with 100 multiplicity of infection (MOI) of adenoviral vector encoding for mouse IFN-β (AdmIFN-β), but not AdE/1 (a control adenoviral vector), produced approximately 60 ng/105 cells/24 h of IFN-β. The tumorigenicity of AdmIFN-β-transduced cells was dramatically reduced in the prostates of C57BL/6 mice. A single intratumoral injection of 2 × 109 PFU (plaque-forming unit) of AdmIFN-β inhibited tumor growth by 70% and prolonged survival of tumor-bearing mice. Intriguingly, this AdmIFN-β therapy did not alter the growth of tumors in inducible nitric oxide synthase (iNOS)-null C57BL/6 mice. Immunohistochemical analysis revealed that treatment of tumors with AdmIFN-β in wild-type C57BL/6 mice led to increased iNOS expression, decreased microvessel density, decreased cell proliferation, and increased apoptosis. Furthermore, quantitative reverse-transcriptional PCR analysis showed that AdmIFN-β therapy, in C57BL/6 but not the iNOS-null counterparts, reduced levels of the mRNAs for angiopoietin, basic fibroblast growth factor, matrix metalloproteinase-9, transforming growth factor-β1, vascular endothelial growth factor (VEGF)-A, and VEGF-B, as well as the antiapoptotic molecule endothelin-1. These data indicated that IFN-β gene therapy could be effective alternative for the treatment of locally advanced prostate cancer and suggest an obligatory role of NO in IFN-β antitumoral effects in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lokshin A, Mayotte JE, Levitt ML . Mechanism of interferon beta-induced squamous differentiation and programmed cell death in human non-small-cell lung cancer cell lines. J Natl Cancer Inst 1995; 87: 206–212.

    Article  CAS  Google Scholar 

  2. Belhumeur P, Lanoix J, Blais Y, Forget D, Steyaert A, Skup D . Action of spontaneously produced beta interferon in differentiation of embryonal carcinoma cells through an autoinduction mechanism. Mol Cell Biol 1993; 13: 2846–2857.

    Article  CAS  Google Scholar 

  3. Qin XQ, Runkel L, Deck C, DeDios C, Barsoum J . Interferon-beta induces S phase accumulation selectively in human transformed cells. J Interferon Cytokine Res 1997; 17: 355–367.

    Article  CAS  Google Scholar 

  4. Clemens MJ . Interferons and apoptosis. J Interferon Cytokine Res Jun 2003; 23: 277–292.

    Article  CAS  Google Scholar 

  5. Biron CA . Interferons alpha and beta as immune regulators – a new look. Immunity 2001; 14: 661–664.

    Article  CAS  Google Scholar 

  6. Albini A, Marchisone C, Del Grosso F, Benelli R, Masiello L, Tacchetti C et al. Inhibition of angiogenesis and vascular tumor growth by interferon- producing cells: a gene therapy approach. Am J Pathol 2000; 156: 1381–1393.

    Article  CAS  Google Scholar 

  7. Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ . Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 1995; 92: 4562–4566.

    Article  CAS  Google Scholar 

  8. Yamamoto S, Yasui W, Kitadai Y, Yokozaki H, Haruma K, Kajiyama G et al. Expression of vascular endothelial growth factor in human gastric carcinomas. Pathol Int 1998; 48: 499–506.

    Article  CAS  Google Scholar 

  9. Einhorn S, Grander D . Why do so many cancer patients fail to respond to interferon therapy? J Interferon Cytokine Res 1996; 16: 275–281.

    Article  CAS  Google Scholar 

  10. Ferrantini M, Belardelli F . Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications. Semin Cancer Biol 2000; 10: 145–157.

    Article  CAS  Google Scholar 

  11. Alizadeh H, Howard K, Mellon J, Mayhew E, Rusciano D, Niederkorn JY . Reduction of liver metastasis of intraocular melanoma by interferon-beta gene transfer. Invest Ophthalmol Vis Sci 2003; 44: 3042–3051.

    Article  Google Scholar 

  12. Odaka M, Sterman DH, Wiewrodt R, Zhang Y, Kiefer M, Amin KM et al. Eradication of intraperitoneal and distant tumor by adenovirus-mediated interferon-beta gene therapy is attributable to induction of systemic immunity. Cancer Res 2001; 61: 6201–6212.

    CAS  PubMed  Google Scholar 

  13. Kruklitis RJ, Singhal S, Delong P, Kapoor V, Sterman DH, Kaiser LR et al. Immuno-gene therapy with interferon-beta before surgical debulking delays recurrence and improves survival in a murine model of malignant mesothelioma. J Thorac Cardiovasc Surg 2004; 127: 123–130.

    Article  CAS  Google Scholar 

  14. Kobayashi N, Kuramoto T, Chen S, Watanabe Y, Takakura Y . Therapeutic effect of intravenous interferon gene delivery with naked plasmid DNA in murine metastasis models. Mol Ther 2002; 6: 737–744.

    Article  CAS  Google Scholar 

  15. Hendren SK, Prabakaran I, Buerk DG, Karakousis G, Feldman M, Spitz F et al. Interferon-beta gene therapy improves survival in an immunocompetent mouse model of carcinomatosis. Surgery 2004; 135: 427–436.

    Article  Google Scholar 

  16. Streck CJ, Ng CY, Zhang Y, Zhou J, Nathwani AC, Davidoff AM . Interferon-mediated anti-angiogenic therapy for neuroblastoma. Cancer Lett 2005; 228: 163–170.

    Article  CAS  Google Scholar 

  17. Streck CJ, Zhang Y, Miyamoto R, Zhou J, Ng CY, Nathwani AC et al. Restriction of neuroblastoma angiogenesis and growth by interferon-alpha/beta. Surgery 2004; 136: 183–189.

    Article  Google Scholar 

  18. Lu W, Fidler IJ, Dong Z . Eradication of primary murine fibrosarcomas and induction of systemic immunity by adenovirus-mediated interferon beta gene therapy. Cancer Res 1999; 59: 5202–5208.

    CAS  PubMed  Google Scholar 

  19. Lu W, u J, Kim LS, Bucana CD, Donawho C, He J et al. Active specific immunotherapy against occult brain metastasis. Cancer Res 2003; 63: 1345–1350.

    CAS  PubMed  Google Scholar 

  20. Nathan C . Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6: 3051–3064.

    Article  CAS  Google Scholar 

  21. Bohle DS . Pathophysiological chemistry of nitric oxide and its oxygenation by-products. Curr Opin Chem Biol 1998; 2: 194–200.

    Article  CAS  Google Scholar 

  22. Kourembanas S, McQuillan LP, Leung GK, Faller DV . Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 1993; 92: 99–104.

    Article  CAS  Google Scholar 

  23. Tuder RM, Flook BE, Voelkel NF . Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 1995; 95: 1798–1807.

    Article  CAS  Google Scholar 

  24. Stuehr DJ . Mammalian nitric oxide synthases. Biochim Biophys Acta 1999; 1411: 217–230.

    Article  CAS  Google Scholar 

  25. Cao G, Su J, Lu W, Zhang F, Marteralli D, Zhao G et al. Adenovirus-mediated interferon-beta gene therapy suppresses growth and metastasis of human prostate cerin nude mice. Cancer Gene Ther 2001; 8: 497–505.

    Article  CAS  Google Scholar 

  26. Ozawa S, Lu W, Bucana CD, Kanayama HO, Shinohara H, Fidler IJ et al. Regression of primary murine colon cancer and occult liver metastasis by intralesional injection of lyophilized preparation of insect cells producing murine interferon-beta. Int J Oncol 2003; 22: 977–984.

    CAS  PubMed  Google Scholar 

  27. Zhang F, Lu W, Dong Z . Tumor-infiltrating macrophages are involved in suppressing growth and metastasis of human prostate cancer cells by INF-beta gene therapy in nude mice. Clin Cancer Res 2002; 8: 2942–2951.

    CAS  PubMed  Google Scholar 

  28. DeLisser HM, Newman PJ, Albelda SM . Molecular and functional aspects of PECAM-1/CD31. Immunol Today 1994; 15: 490–495.

    Article  CAS  Google Scholar 

  29. Mathews MB, Bernstein RM, Franza Jr BR, Garrels JI . Identity of the proliferating cell nuclear antigen and cyclin. Nature 1984; 309: 374–376.

    Article  CAS  Google Scholar 

  30. Caminschi I, Lucas KM, O'Keeffe MA, Hochrein H, Laabi Y, Kontgen F et al. Molecular cloning of F4/80-like-receptor, a seven-span membrane protein expressed differentially by dendritic cell and monocyte-macrophage subpopulations. J Immunol 2001; 167: 3570–3576.

    Article  CAS  Google Scholar 

  31. Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM . Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 1997; 57: 3325–3330.

    CAS  PubMed  Google Scholar 

  32. Dong Z, Greene G, Pettaway C, Dinney CP, Eue I, Lu W et al. Suppression of angiogenesis, tumorigenicity, and metastasis by human prostate cancer cells engineered to produce interferon-beta. Cancer Res 1999; 59: 872–879.

    CAS  PubMed  Google Scholar 

  33. Zhang F, Lee J, Lu S, Pettaway CA, Dong Z . Blockade of transforming growth factor-beta signaling suppresses progression of androgen-independent human prostate cancer in nude mice. Clin Cancer Res 2005; 11: 4512–4520.

    Article  CAS  Google Scholar 

  34. Muller PY, Janovjak H, Miserez AR, Dobbie Z . Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 2002; 32: 1372–1374, 1376, 1378–1379.

    CAS  PubMed  Google Scholar 

  35. Singh RK, Gutman M, Llansa N, Fidler IJ . Interferon-beta prevents the upregulation of interleukin-8 expression in human melanoma cells. J Interferon Cytokine Res 1996; 16: 577–584.

    Article  CAS  Google Scholar 

  36. Fabra A, Nakajima M, Bucana CD, Fidler IJ . Modulation of the invasive phenotype of human colon carcinoma cells by organ specific fibroblasts of nude mice. Differentiation 1992; 52: 101–110.

    Article  CAS  Google Scholar 

  37. Kato N, Nawa A, Tamakoshi K, Kikkawa F, Suganuma N, Okamoto T et al. Suppression of gelatinase production with decreased invasiveness of choriocarcinoma cells by human recombinant interferon beta. Am J Obstet Gynecol 1995; 172: 601–606.

    Article  CAS  Google Scholar 

  38. Sica G, Fabbroni L, Castagnetta L, Cacciatore M, Pavone-Macaluso M . Antiproliferative effect of interferons on human prostate carcinoma cell lines. Urol Res 1989; 17: 111–115.

    Article  CAS  Google Scholar 

  39. Johns TG, Mackay IR, Callister KA, Hertzog PJ, Devenish RJ, Linnane AW . Antiproliferative potencies of interferons on melanoma cell lines and xenografts: higher efficacy of interferon beta. J Natl Cancer Inst 1992; 84: 1185–1190.

    Article  CAS  Google Scholar 

  40. Wong VL, Rieman DJ, Aronson L, Dalton BJ, Greig R, Anzano MA . Growth-inhibitory activity of interferon-beta against human colorectal carcinoma cell lines. Int J Cancer 1989; 43: 526–530.

    Article  CAS  Google Scholar 

  41. Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW et al. Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 1995; 181: 1333–1343.

    Article  CAS  Google Scholar 

  42. Nelson JB, Udan MS, Guruli G, Pflug BR . Endothelin-1 inhibits apoptosis in prostate cancer. Neoplasia 2005; 7: 631–637.

    Article  CAS  Google Scholar 

  43. Nakayama J, Takeuchi M, Mayumi H, Nagae S, Matsuda K, Yasui H et al. Hyperthermic isolated limb perfusion with intra-arterial administration of carboplatin and/or interferon-beta for the treatment of malignant melanoma of the leg. J Dermatol 1994; 21: 915–922.

    Article  CAS  Google Scholar 

  44. Vieillard V, Lauret E, Rousseau V, De Maeyer E . Blocking of retroviral infection at a step prior to reverse transcription in cells transformed to constitutively express interferon beta. Pro Natl Acad of Sci USA 1994; 91: 2689–2693.

    Article  CAS  Google Scholar 

  45. Jiang H, Dhib-Jalbut S . Differential induction of IL-12 by IFN-beta and IFN-gamma in human macrophages. J Interferon Cytokine Res 1998; 18: 697–703.

    Article  CAS  Google Scholar 

  46. Luft T, Pang KC, Thomas E, Hertzog P, Hart DN, Trapani J et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 1998; 161: 1947–1953.

    CAS  PubMed  Google Scholar 

  47. Fleischmann CM, Stanton GJ, Fleischmann Jr WR . Enhanced in vivo sensitivity of in vitro interferon-treated B16 melanoma cells to CD8 cells and activated macrophages. J Interferon Cytokine Res 1996; 16: 805–812.

    Article  CAS  Google Scholar 

  48. Sahasrabudhe DM, Dusel JC . Effect of murine interferon alpha/beta on tumour-induced suppressor function. Cancer Immunol Immunother 1994; 39: 360–366.

    Article  CAS  Google Scholar 

  49. Spear GT, Paulnock DM, Jordan RL, Meltzer DM, Merritt JA, Borden EC . Enhancement of monocyte class I and II histocompatibility antigen expression in man by in vivo beta-interferon. Clin Exp Immunol 1987; 69: 107–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Marrack P, Kappler J, Mitchell T . Type I interferon keep activated T cell alive. J Exp Med 1999; 189: 521–529.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Robert Franco (University of Cincinnati College of Medicine) for critical reading of this manuscript, Dr Corazon D Bucana (University of Texas MD Anderson Cancer Center) for technical assistance with immunohistochemical staining. This work is supported in part by funds from The University of Cincinnati College of Medicine Cancer Center Start-up funds (to ZD) and RSG-98-332-02-CCE from the American Cancer Society (to ZD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, M., Lee, J., Zhang, F. et al. Inducible nitric oxide synthase activity is essential for inhibition of prostatic tumor growth by interferon-β gene therapy. Cancer Gene Ther 13, 676–685 (2006). https://doi.org/10.1038/sj.cgt.7700941

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700941

Keywords

This article is cited by

Search

Quick links