Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy for malignant mesothelioma: beyond the infant years

Abstract

Mesothelioma may be particularly well suited for gene therapy treatment owing to its accessibility, allowing both intrapleural and intratumoral gene delivery. At least four gene therapy trials have been carried out in mesothelioma patients, using different vector systems (adenovirus, vaccinia virus, irradiated tumor cells), and different transgenes (herpes simplex virus thymidine kinase (HSVtk) combined with ganciclovir, IL-2, IFN-β). Although small in scale, these trials have given an inkling of hope for therapeutic efficacy. However, it is clear that gene therapy protocols need to be optimized further. This paper will review progress made in (i) vector development, (ii) defining optimal transgenes, and (iii) gene delivery. Adenoviruses are the most commonly used vectors for gene therapy, and are continuously being improved. With respect to the nature of the transgenes, five categories can be distinguished: (i) ‘suicide’ or sensitivity genes (e.g., HSVtk), (ii) cytokines and other immune modulators, (iii) replacements for mutant tumor suppressor genes (e.g., p53), (iv) antiangiogenic proteins and (v) tumor antigens. It seems clear that expression of a single transgene is unlikely to be sufficient to eradicate a tumor, such as mesothelioma, that is diagnosed late in disease progression. Hence, multimodality therapy, including conventional therapy (chemo- and radiotherapy, surgery) with one or more transgenes has a higher chance of success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sterman DH, Albelda SM . Advances in the diagnosis, evaluation, and management of malignant pleural mesothelioma. Respirology 2005; 10: 266–283.

    PubMed  Google Scholar 

  2. Nowak AK, Lake RA, Kindler HL, Robinson BW . New approaches for mesothelioma: biologics, vaccines, gene therapy, and other novel agents. Semin Oncol 2002; 29: 82–96.

    CAS  PubMed  Google Scholar 

  3. Albelda SM, Wiewrodt R, Sterman DH . Gene therapy for lung neoplasms. Clin Chest Med 2002; 23: 265–277.

    PubMed  Google Scholar 

  4. Wu Q, Moyana T, Xiang J . Cancer gene therapy by adenovirus-mediated gene transfer. Curr Gene Ther 2001; 1: 101–122.

    CAS  PubMed  Google Scholar 

  5. Gottesman MM . Cancer gene therapy: an awkward adolescence. Cancer Gene Ther 2003; 10: 501–508.

    CAS  PubMed  Google Scholar 

  6. Nelson D, Robinson B, Allan J, van der Most R . Gene therapy of mesothelioma. Expert Opin Biol Ther 2005; 5: 1039–1049.

    CAS  PubMed  Google Scholar 

  7. Sterman DH, Kaiser LR, Albelda SM . Gene therapy for malignant pleural mesothelioma. Hematol Oncol Clin North Am 1998; 12: 553–568.

    CAS  PubMed  Google Scholar 

  8. Molnar-Kimber KL, Sterman DH, Chang M, Kang EH, ElBash M, Lanuti M et al. Impact of preexisting and induced humoral and cellular immune responses in an adenovirus-based gene therapy phase I clinical trial for localized mesothelioma. Hum Gene Ther 1998; 9: 2121–2133.

    CAS  PubMed  Google Scholar 

  9. Smythe WR, Hwang HC, Amin KM, Eck SL, Davidson BL, Wilson JM et al. Use of recombinant adenovirus to transfer the herpes simplex virus thymidine kinase (HSVtk) gene to thoracic neoplasms: an effective in vitro drug sensitization system. Cancer Res 1994; 54: 2055–2059.

    CAS  PubMed  Google Scholar 

  10. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276–5281.

    CAS  PubMed  Google Scholar 

  11. Moolten FL, Wells JM . Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82: 297–300.

    CAS  PubMed  Google Scholar 

  12. Elshami AA, Kucharczuk JC, Zhang HB, Smythe WR, Hwang HC, Litzky LA et al. Treatment of pleural mesothelioma in an immunocompetent rat model utilizing adenoviral transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther 1996; 7: 141–148.

    CAS  PubMed  Google Scholar 

  13. Kucharczuk JC, Raper S, Elshami AA, Amin KM, Sterman DH, Wheeldon EB et al. Safety of intrapleurally administered recombinant adenovirus carrying herpes simplex thymidine kinase DNA followed by ganciclovir therapy in nonhuman primates. Hum Gene Ther 1996; 7: 2225–2233.

    CAS  PubMed  Google Scholar 

  14. Esandi MC, van Someren GD, Vincent AJ, van Bekkum DW, Valerio D, Bout A et al. Gene therapy of experimental malignant mesothelioma using adenovirus vectors encoding the HSVtk gene. Gene Therapy 1997; 4: 280–287.

    CAS  PubMed  Google Scholar 

  15. Lanuti M, Gao GP, Force SD, Chang MY, El Kouri C, Amin KM et al. Evaluation of an E1E4-deleted adenovirus expressing the herpes simplex thymidine kinase suicide gene in cancer gene therapy. Hum Gene Ther 1999; 10: 463–475.

    CAS  PubMed  Google Scholar 

  16. Sterman DH, Recio A, Vachani A, Sun J, Cheung L, DeLong P et al. Long-term follow-up of patients with malignant pleural mesothelioma receiving high-dose adenovirus herpes simplex thymidine kinase/ganciclovir suicide gene therapy. Clin Cancer Res 2005; 11: 7444–7453.

    CAS  PubMed  Google Scholar 

  17. Mukherjee S, Haenel T, Himbeck R, Scott B, Ramshaw I, Lake RA et al. Replication-restricted vaccinia as a cytokine gene therapy vector in cancer: persistent transgene expression despite antibody generation. Cancer Gene Ther 2000; 7: 663–670.

    CAS  PubMed  Google Scholar 

  18. Blattman JN, Grayson JM, Wherry EJ, Kaech SM, Smith KA, Ahmed R . Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat Med 2003; 9: 540–547.

    CAS  PubMed  Google Scholar 

  19. Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D et al. IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol 2003; 171: 5051–5063.

    CAS  PubMed  Google Scholar 

  20. Castagneto B, Zai S, Mutti L, Lazzaro A, Ridolfi R, Piccolini E et al. Palliative and therapeutic activity of IL-2 immunotherapy in unresectable malignant pleural mesothelioma with pleural effusion: results of a phase II study on 31 consecutive patients. Lung Cancer 2001; 31: 303–310.

    CAS  PubMed  Google Scholar 

  21. Goey SH, Eggermont AM, Punt CJ, Slingerland R, Gratama JW, Oosterom R et al. Intrapleural administration of interleukin 2 in pleural mesothelioma: a phase I–II study. Br J Cancer 1995; 72: 1283–1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Astoul P, Picat-Joossen D, Viallat JR, Boutin C . Intrapleural administration of interleukin-2 for the treatment of patients with malignant pleural mesothelioma: a Phase II study. Cancer 1998; 83: 2099–2104.

    CAS  PubMed  Google Scholar 

  23. Trudel S, Trachtenberg J, Toi A, Sweet J, Li ZH, Jewett M et al. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther 2003; 10: 755–763.

    CAS  PubMed  Google Scholar 

  24. Schwarzenberger P, Lei D, Freeman SM, Ye P, Weinacker A, Theodossiou C et al. Antitumor activity with the HSV-tk-gene-modified cell line PA-1-STK in malignant mesothelioma. Am J Respir Cell Mol Biol 1998; 19: 333–337.

    CAS  PubMed  Google Scholar 

  25. Schwarzenberger P, Harrison L, Weinacker A, Marrogi A, Byrne P, Ramesh R et al. The treatment of malignant mesothelioma with a gene modified cancer cell line: a phase I study. Hum Gene Ther 1998; 9: 2641–2649.

    CAS  PubMed  Google Scholar 

  26. Harrison Jr LH, Schwarzenberger PO, Byrne PS, Marrogi AJ, Kolls JK, McCarthy KE . Gene-modified PA1-STK cells home to tumor sites in patients with malignant pleural mesothelioma. Ann Thorac Surg 2000; 70: 407–411.

    PubMed  Google Scholar 

  27. Vorburger SA, Hunt KK . Adenoviral gene therapy. Oncologist 2002; 7: 46–59.

    CAS  PubMed  Google Scholar 

  28. Sterman DH, Molnar-Kimber K, Iyengar T, Chang M, Lanuti M, Amin KM et al. A pilot study of systemic corticosteroid administration in conjunction with intrapleural adenoviral vector administration in patients with malignant pleural mesothelioma. Cancer Gene Ther 2000; 7: 1511–1518.

    CAS  PubMed  Google Scholar 

  29. Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WS . Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23: 75–111.

    CAS  PubMed  Google Scholar 

  30. Shayakhmetov DM, Li ZY, Gaggar A, Gharwan H, Ternovoi V, Sandig V et al. Genome size and structure determine efficiency of postinternalization steps and gene transfer of capsid-modified adenovirus vectors in a cell-type-specific manner. J Virol 2004; 78: 10009–10022.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gaggar A, Shayakhmetov DM, Lieber A . CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003; 9: 1408–1412.

    CAS  PubMed  Google Scholar 

  32. Dobbelstein M . Replicating adenoviruses in cancer therapy. Curr Top Microbiol Immunol 2004; 273: 291–334.

    CAS  PubMed  Google Scholar 

  33. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    CAS  PubMed  Google Scholar 

  34. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    CAS  PubMed  Google Scholar 

  35. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H . Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72: 9470–9478.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 1999; 73: 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang CT, You L, Uematsu K, Yeh CC, McCormick F, Jablons DM . p14(ARF) modulates the cytolytic effect of ONYX-015 in mesothelioma cells with wild-type p53. Cancer Res 2001; 61: 5959–5963.

    CAS  PubMed  Google Scholar 

  38. Miller JD, van der Most RG, Glidewell JT, Murali-Krishna K, Mahar P, Edupuganti S et al. Primary antiviral CD8 T cell responses to live yellow fever and smallpox immunization in humans. Manuscript in preparation.

  39. Rodriguez-Lecompte JC, Kruth S, Gyorffy S, Wan YH, Gauldie J . Cell-based cancer gene therapy: breaking tolerance or inducing autoimmunity? Anim Health Res Rev 2004; 5: 227–234.

    CAS  PubMed  Google Scholar 

  40. Caux C, Liu YJ, Banchereau J . Recent advances in the study of dendritic cells and follicular dendritic cells. Immunol Today 1995; 16: 2–4.

    CAS  PubMed  Google Scholar 

  41. Steinman RM . The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–296.

    CAS  PubMed  Google Scholar 

  42. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9–26.

    CAS  PubMed  Google Scholar 

  43. Arthur JF, Butterfield LH, Roth MD, Bui LA, Kiertscher SM, Lau R et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 1997; 4: 17–25.

    CAS  PubMed  Google Scholar 

  44. Ridgway D . The first 1000 dendritic cell vaccinees. Cancer Invest 2003; 21: 873–886.

    PubMed  Google Scholar 

  45. Freeman SM, Whartenby KA, Freeman JL, Abboud CN, Marrogi AJ . In situ use of suicide genes for cancer therapy. Semin Oncol 1996; 23: 31–45.

    CAS  PubMed  Google Scholar 

  46. Hirschowitz EA, Ohwada A, Pascal WR, Russi TJ, Crystal RG . In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine. Hum Gene Ther 1995; 6: 1055–1063.

    CAS  PubMed  Google Scholar 

  47. Ohwada A, Hirschowitz EA, Crystal RG . Regional delivery of an adenovirus vector containing the Escherichia coli cytosine deaminase gene to provide local activation of 5-fluorocytosine to suppress the growth of colon carcinoma metastatic to liver. Hum Gene Ther 1996; 7: 1567–1576.

    CAS  PubMed  Google Scholar 

  48. Dong Y, Wen P, Manome Y, Parr M, Hirshowitz A, Chen L et al. In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5-fluorocytosine. Hum Gene Ther 1996; 7: 713–720.

    CAS  PubMed  Google Scholar 

  49. Crystal RG, Hirschowitz E, Lieberman M, Daly J, Kazam E, Henschke C et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther 1997; 8: 985–1001.

    CAS  PubMed  Google Scholar 

  50. Wang Z, Cook T, Alber S, Liu K, Kovesdi I, Watkins SK et al. Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res 2004; 64: 1386–1395.

    CAS  PubMed  Google Scholar 

  51. Anello R, Cohen S, Atkinson G, Hall SJ . Adenovirus mediated cytosine deaminase gene transduction and 5-fluorocytosine therapy sensitizes mouse prostate cancer cells to irradiation. J Urol 2000; 164: 2173–2177.

    CAS  PubMed  Google Scholar 

  52. Kawabe S, Munshi A, Zumstein LA, Wilson DR, Roth JA, Meyn RE . Adenovirus-mediated wild-type p53 gene expression radiosensitizes non-small cell lung cancer cells but not normal lung fibroblasts. Int J Radiat Biol 2001; 77: 185–194.

    CAS  PubMed  Google Scholar 

  53. Worthington J, McCarthy HO, Barrett E, Adams C, Robson T, Hirst DG . Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment. J Gene Med 2004; 6: 673–680.

    CAS  PubMed  Google Scholar 

  54. Freeman SM, Whartenby KA, Freeman JL, Abboud CN, Marrogi AJ . In situ use of suicide genes for cancer therapy. Semin Oncol 1996; 23: 31–45.

    CAS  PubMed  Google Scholar 

  55. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  56. Hirschowitz EA, Ohwada A, Pascal WR, Russi TJ, Crystal RG . In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine. Hum Gene Ther 1995; 6: 1055–1063.

    CAS  PubMed  Google Scholar 

  57. Elshami AA, Kucharczuk JC, Zhang HB, Smythe WR, Hwang HC, Litzky LA et al. Treatment of pleural mesothelioma in an immunocompetent rat model utilizing adenoviral transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther 1996; 7: 141–148.

    CAS  PubMed  Google Scholar 

  58. Pope IM, Poston GJ, Kinsella AR . The role of the bystander effect in suicide gene therapy. Eur J Cancer 1997; 33: 1005–1016.

    CAS  PubMed  Google Scholar 

  59. Hamel W, Magnelli L, Chiarugi VP, Israel MA . Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Res 1996; 56: 2697–2702.

    CAS  PubMed  Google Scholar 

  60. Robinson BW, Mukherjee SA, Davidson A, Morey S, Musk AW, Ramshaw I et al. Cytokine gene therapy or infusion as treatment for solid human cancer. J Immunother 1998; 21: 211–217.

    CAS  PubMed  Google Scholar 

  61. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990; 60: 397–403.

    CAS  PubMed  Google Scholar 

  62. Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 1991; 254: 713–716.

    CAS  PubMed  Google Scholar 

  63. Caminschi I, Venetsanakos E, Leong CC, Garlepp MJ, Robinson BW, Scott B . Interleukin-12 induces an effective antitumor response in maligant mesothelioma. Am J Respir Cell Mol Biol 1998; 21: 738–746.

    Google Scholar 

  64. Croce M, Meazza R, Orengo AM, Radic L, De Giovanni B, Gambini C et al. Sequential immunogene therapy with interleukin-12- and interleukin-15-engineered neuroblastoma cells cures metastatic disease in syngeneic mice. Clin Cancer Res 2005; 11: 735–742.

    CAS  PubMed  Google Scholar 

  65. Kishida T, Asada H, Itokawa Y, Cui FD, Shin-Ya M, Gojo S et al. Interleukin (IL)-21 and IL-15 genetic transfer synergistically augments therapeutic antitumor immunity and promotes regression of metastatic lymphoma. Mol Ther 2003; 8: 552–558.

    CAS  PubMed  Google Scholar 

  66. Leong CC, Marley JV, Loh S, Milech N, Robinson BW, Garlepp MJ . Transfection of the gene for B7-1 but not B7-2 can induce immunity to murine malignant mesothelioma. Int J Cancer 1997; 71: 476–482.

    CAS  PubMed  Google Scholar 

  67. Mukherjee S, Nelson D, Loh S, van Bruggen I, Palmer LJ, Leong C et al. The immune anti-tumor effects of GM-CSF and B7-1 gene transfection are enhanced by surgical debulking of tumor. Cancer Gene Ther 2001; 8: 580–588.

    CAS  PubMed  Google Scholar 

  68. Odaka M, Sterman DH, Wiewrodt R, Zhang Y, Kiefer M, Amin KM et al. Eradication of intraperitoneal and distant tumor by adenovirus-mediated interferon-beta gene therapy is attributable to induction of systemic immunity. Cancer Res 2001; 61: 6201–6212.

    CAS  PubMed  Google Scholar 

  69. Gattacceca F, Pilatte Y, Billard C, Monnet I, Moritz S, Le Carrou J et al. Ad-IFN gamma induces antiproliferative and antitumoral responses in malignant mesothelioma. Clin Cancer Res 2002; 8: 3298–3304.

    CAS  PubMed  Google Scholar 

  70. Asher AL, Mule JJ, Kasid A, Restifo NP, Salo JC, Reichert CM et al. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. Evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol 1991; 146: 3227–3234.

    CAS  PubMed  Google Scholar 

  71. Kruklitis RJ, Singhal S, Delong P, Kapoor V, Sterman DH, Kaiser LR et al. Immuno-gene therapy with interferon-beta before surgical debulking delays recurrence and improves survival in a murine model of malignant mesothelioma. J Thorac Cardiovasc Surg 2004; 127: 123–130.

    CAS  PubMed  Google Scholar 

  72. DeLong P, Tanaka T, Kruklitis R, Henry AC, Kapoor V, Kaiser LR et al. Use of cyclooxygenase-2 inhibition to enhance the efficacy of immunotherapy. Cancer Res 2003; 63: 7845–7852.

    CAS  PubMed  Google Scholar 

  73. Upham JW, Musk AW, van Hazel G, Byrne M, Robinson BW . Interferon alpha and doxorubicin in malignant mesothelioma: a phase II study. Aust NZ J Med 1993; 23: 683–687.

    CAS  Google Scholar 

  74. Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 2003; 4: 1009–1015.

    CAS  PubMed  Google Scholar 

  75. Lake RA, Robinson BW . Immunotherapy and chemotherapy – a practical partnership. Nat Rev Cancer 2005; 5: 397–405.

    CAS  PubMed  Google Scholar 

  76. Takahashi T, Carbone D, Nau MM, Hida T, Linnoila I, Ueda R et al. Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res 1992; 52: 2340–2343.

    CAS  PubMed  Google Scholar 

  77. Metcalf RA, Welsh JA, Bennett WP, Seddon MB, Lehman TA, Pelin K et al. p53 and Kirsten-ras mutations in human mesothelioma cell lines. Cancer Res 1992; 52: 2610–2615.

    CAS  PubMed  Google Scholar 

  78. Giuliano M, Catalano A, Strizzi L, Vianale G, Capogrossi M, Procopio A . Adenovirus-mediated wild-type p53 overexpression reverts tumourigenicity of human mesothelioma cells. Int J Mol Med 2000; 5: 591–596.

    CAS  PubMed  Google Scholar 

  79. Testa JR, Giordano A . SV40 and cell cycle perturbations in malignant mesothelioma. Semin Cancer Biol 2001; 11: 31–38.

    CAS  PubMed  Google Scholar 

  80. Wong L, Zhou J, Anderson D, Kratzke RA . Inactivation of p16INK4a expression in malignant mesothelioma by methylation. Lung Cancer 2002; 38: 131–136.

    PubMed  Google Scholar 

  81. Frizelle SP, Rubins JB, Zhou JX, Curiel DT, Kratzke RA . Gene therapy of established mesothelioma xenografts with recombinant p16INK4a adenovirus. Cancer Gene Ther 2000; 7: 1421–1425.

    CAS  PubMed  Google Scholar 

  82. Chin L, Pomerantz J, DePinho RA . The INK4a/ARF tumor suppressor: one gene – two products – two pathways. Trends Biochem Sci 1998; 23: 291–296.

    CAS  PubMed  Google Scholar 

  83. Yang CT, You L, Lin YC, Lin CL, McCormick F, Jablons DM . A comparison analysis of anti-tumor efficacy of adenoviral gene replacement therapy (p14ARF and p16INK4A) in human mesothelioma cells. Anticancer Res 2003; 23: 33–38.

    PubMed  Google Scholar 

  84. Yang CT, You L, Yeh CC, Chang JW, Zhang F, McCormick F et al. Adenovirus-mediated p14(ARF) gene transfer in human mesothelioma cells. J Natl Cancer Inst 2000; 92: 636–641.

    CAS  PubMed  Google Scholar 

  85. Frizelle SP, Grim J, Zhou J, Gupta P, Curiel DT, Geradts J et al. Re-expression of p16INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression. Oncogene 1998; 16: 3087–3095.

    CAS  PubMed  Google Scholar 

  86. Pataer A, Smythe WR, Yu R, Fang B, McDonnell T, Roth JA et al. Adenovirus-mediated Bak gene transfer induces apoptosis in mesothelioma cell lines. J Thorac Cardiovasc Surg 2001; 121: 61–67.

    CAS  PubMed  Google Scholar 

  87. Mohiuddin I, Cao X, Fang B, Nishizaki M, Smythe WR . Significant augmentation of pro-apoptotic gene therapy by pharmacologic bcl-xl down-regulation in mesothelioma. Cancer Gene Ther 2001; 8: 547–554.

    CAS  PubMed  Google Scholar 

  88. Benouchan M, Colombo BM . Anti-angiogenic strategies for cancer therapy (Review). Int J Oncol 2005; 27: 563–571.

    CAS  PubMed  Google Scholar 

  89. Indraccolo S . Undermining tumor angiogenesis by gene therapy: an emerging field. Curr Gene Ther 2004; 4: 297–308.

    CAS  PubMed  Google Scholar 

  90. Kuo CJ, Farnebo F, Yu EY, Christofferson R, Swearingen RA, Carter R et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci USA 2001; 98: 4605–4610.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Merritt RE, Yamada RE, Wasif N, Crystal RG, Korst RJ . Effect of inhibition of multiple steps of angiogenesis in syngeneic murine pleural mesothelioma. Ann Thorac Surg 2004; 78: 1042–1051; discussion 1042–1051.

    PubMed  Google Scholar 

  92. Colombo MP, Trinchieri G . Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13: 155–168.

    CAS  PubMed  Google Scholar 

  93. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hassan R, Bera T, Pastan I . Mesothelin: a new target for immunotherapy. Clin Cancer Res 2004; 10: 3937–3942.

    CAS  PubMed  Google Scholar 

  95. Thomas AM, Santarsiero LM, Lutz ER, Armstrong TD, Chen YC, Huang LQ et al. Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med 2004; 200: 297–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Manfredi JJ, Dong J, Liu WJ, Resnick-Silverman L, Qiao R, Chahinian P et al. Evidence against a role for SV40 in human mesothelioma. Cancer Res 2005; 65: 2602–2609.

    CAS  PubMed  Google Scholar 

  97. Pass HI, Bocchetta M, Carbone M . Evidence of an important role for SV40 in mesothelioma. Thorac Surg Clin 2004; 14: 489–495.

    PubMed  Google Scholar 

  98. Imperiale MJ, Pass HI, Sanda MG . Prospects for an SV40 vaccine. Semin Cancer Biol 2001; 11: 81–85.

    CAS  PubMed  Google Scholar 

  99. Davidson JA, Musk AW, Wood BR, Morey S, Ilton M, Yu LL et al. Intralesional cytokine therapy in cancer: a pilot study of GM-CSF infusion in mesothelioma. J Immunother 1998; 21: 389–398.

    CAS  PubMed  Google Scholar 

  100. Hecht JR, Bedford R, Abbruzzese JL, Lahoti S, Reid TR, Soetikno RM et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003; 9: 555–561; 12: 737–748.

    CAS  PubMed  Google Scholar 

  101. Uchino J, Takayama K, Harada A, Kawakami Y, Inoue H, Curiel DT et al. Infectivity enhanced, hTERT promoter-based conditionally replicative adenoviruses are useful for SCLC treatment. Cancer Gene Ther 2005; 12: 737–748.

    CAS  PubMed  Google Scholar 

  102. Robinson BW, Creaney J, Lake R, Nowak A, Musk AW, de Klerk N et al. Mesothelin-family proteins and diagnosis of mesothelioma. Lancet 2003; 362: 1612–1616.

    CAS  PubMed  Google Scholar 

  103. Urwin D, Lake RA . Structure of the Mesothelin/MPF gene and characterization of its promoter. Mol Cell Biol Res Commun 2000; 3: 26–32.

    CAS  PubMed  Google Scholar 

  104. Harrington LE, Most RvR, Whitton JL, Ahmed R . Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J Virol 2002; 76: 3329–3337.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 2004; 22: 313–320.

    CAS  PubMed  Google Scholar 

  106. Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, Mizutani M et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res 2005; 65: 553–561.

    CAS  PubMed  Google Scholar 

  107. Mizutani N, Luo Y, Mizutani M, Reisfeld RA, Xiang R . DNA vaccines suppress angiogenesis and protect against growth of breast cancer metastases. Breast Dis 2004; 20: 81–91.

    CAS  PubMed  Google Scholar 

  108. Norman KL, Lee PW . Not all viruses are bad guys: the case for reovirus in cancer therapy. Drug Discov Today 2005; 10: 847–855.

    CAS  PubMed  Google Scholar 

  109. Myers R, Greiner S, Harvey M, Soeffker D, Frenzke M, Abraham K et al. Oncolytic activities of approved mumps and measles vaccines for therapy of ovarian cancer. Cancer Gene Ther 2005; 12: 593–599.

    CAS  PubMed  Google Scholar 

  110. Tseng JC, Levin B, Hurtado A, Yee H, Perez de Castro I, Jimenez M et al. Systemic tumor targeting and killing by Sindbis viral vectors. Nat Biotechnol 2004; 22: 70–77.

    CAS  PubMed  Google Scholar 

  111. Kucharczuk JC, Randazzo B, Chang MY, Amin KM, Elshami AA, Sterman DH et al. Use of a ‘replication-restricted’ herpes virus to treat experimental human malignant mesothelioma. Cancer Res 1997; 57: 466–471.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R G van der Most.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Most, R., Robinson, B. & Nelson, D. Gene therapy for malignant mesothelioma: beyond the infant years. Cancer Gene Ther 13, 897–904 (2006). https://doi.org/10.1038/sj.cgt.7700935

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700935

Keywords

This article is cited by

Search

Quick links