Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Selective replication of E1B55K-deleted adenoviruses depends on enhanced E1A expression in cancer cells

Abstract

E1B55K-deleted dl1520 could selectively replicate in cancer cells and has been used in clinical trials as an antitumor agent. The mechanism of virus selective replication in cancer cells, including a possible role of p53, is unclear. Studies with established cancer cell lines have demonstrated that some cancer cells are resistant to dl1520 replication, regardless of the p53 status. Hep3B cells supported the E1b-deleted adenoviruses to replicate, whereas Saos2 cells were resistant to viral replication. We applied p53-null Hep3B and Saos2 cells as models to clarify the replication ability of E1B55K-deleted adenoviruses with different expression levels of E1a. We show that lower E1A expression in Saos2 may be the reason for the poor replication in some cancer cells due to the fact that E1a promoter was less activated in Saos2 than in Hep3B. We also demonstrate that the E1B55K protein can increase E1A expression in Saos2 cells for efficient virus replication. In addition, the upstream regions of the E1a promoter have transcriptional activity in Hep3B cells but not in Saos2 cells. The viral E1B55K protein may activate cancer cellular factor(s) that targets the upstream regions of the E1a gene to increase its expression. This is the first study demonstrating that E1B55K protein affects the E1A production levels that is related to cancer selective replication. Our studies have suggested that increase of E1A expression from E1b-deleted adenoviruses may enhance killing cancer cells that otherwise are resistant to viral replication.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 5
Figure 2
Figure 3
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

WT:

wild type

MOI:

multiplicity of infection

PFU:

plaque-forming unit(s)

CPE:

cytopathic effect

CMV:

cytomegalovirus

References

  1. Zhao T, Rao XM, Xie X, Li L, Thompson TC, McMasters KM et al. Adenovirus with insertion-mutated E1A selectively propagates in liver cancer cells and destroys tumors in vivo. Cancer Res 2003; 63: 3073–3078.

    CAS  PubMed  Google Scholar 

  2. Rao XM, Tseng MT, Zheng X, Dong Y, Jamshidi-Parsian A, Thompson TC et al. E1A-induced apoptosis does not prevent replication of adenoviruses with deletion of E1b in majority of infected cancer cells. Cancer Gene Ther 2004; 11: 585–593.

    Article  CAS  PubMed  Google Scholar 

  3. Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999; 10: 1721–1733.

    Article  CAS  PubMed  Google Scholar 

  4. Kim J, Lee B, Kim JS, Yun CO, Kim JH, Lee YJ et al. Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in alpha-fetoprotein-producing human liver cancer cells. Cancer Lett 2002; 180: 23–32.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi M, Sato T, Sagawa T, Lu Y, Sato Y, Iyama S et al. E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol Ther 2002; 5: 627–634.

    Article  CAS  PubMed  Google Scholar 

  6. Ren XW, Liang M, Meng X, Ye X, Ma H, Zhao Y et al. A tumor-specific conditionally replicative adenovirus vector expressing TRAIL for gene therapy of hepatocellular carcinoma. Cancer Gene Ther 2005 (in press).

  7. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 2000; 106: 763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernandez-Alcoceba R, Pihalja M, Wicha MS, Clarke MF . A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum Gene Ther 2000; 11: 2009–2024.

    Article  CAS  PubMed  Google Scholar 

  9. Sarkar D, Su ZZ, Vozhilla N, Park ES, Gupta P, Fisher PB . Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci USA 2005; 102: 14034–14039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dwyer RM, Bergert ER, O'Connor MK, Gendler SJ, Morris JC . In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven expression of the sodium iodide symporter. Clin Cancer Res 2005; 11: 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  11. Fuerer C, Iggo R . Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Therapy 2002; 9: 270–281.

    Article  CAS  PubMed  Google Scholar 

  12. Nettelbeck DM, Rivera AA, Balague C, Alemany R, Curiel DT . Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res 2002; 62: 4663–4670.

    CAS  PubMed  Google Scholar 

  13. Banerjee NS, Rivera AA, Wang M, Chow LT, Broker TR, Curiel DT et al. Analyses of melanoma-targeted oncolytic adenoviruses with tyrosinase enhancer/promoter-driven E1A, E4, or both in submerged cells and organotypic cultures. Mol Cancer Ther 2004; 3: 437–449.

    CAS  PubMed  Google Scholar 

  14. Peter I, Graf C, Dummer R, Schaffner W, Greber UF, Hemmi S . A novel attenuated replication-competent adenovirus for melanoma therapy. Gene Therapy 2003; 10: 530–539.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Ye T, Sun D, Maynard J, Deisseroth A . Conditionally replication-competent adenoviral vectors with enhanced infectivity for use in gene therapy of melanoma. Hum Gene Ther 2004; 15: 637–647.

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–2563.

    CAS  PubMed  Google Scholar 

  17. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR . The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59: 4200–4203.

    CAS  PubMed  Google Scholar 

  18. Yu DC, Chen Y, Dilley J, Li Y, Embry M, Zhang H et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res 2001; 61: 517–525.

    CAS  PubMed  Google Scholar 

  19. Chen Y, DeWeese T, Dilley J, Zhang Y, Li Y, Ramesh N et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res 2001; 61: 5453–5460.

    CAS  PubMed  Google Scholar 

  20. DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61: 7464–7472.

    CAS  PubMed  Google Scholar 

  21. Dilley J, Reddy S, Ko D, Nguyen N, Rojas G, Working P et al. Oncolytic adenovirus CG7870 in combination with radiation demonstrates synergistic enhancements of antitumor efficacy without loss of specificity. Cancer Gene Ther 2005; 12: 715–722.

    Article  CAS  PubMed  Google Scholar 

  22. Haviv YS, Curiel DT . Engineering regulatory elements for conditionally-replicative adeno-viruses. Curr Gene Ther 2003; 3: 357–385.

    Article  CAS  PubMed  Google Scholar 

  23. Nettelbeck DM . Virotherapeutics: conditionally replicative adenoviruses for viral oncolysis. Anticancer Drugs 2003; 14: 577–584.

    Article  CAS  PubMed  Google Scholar 

  24. Kanerva A, Hemminki A . Modified adenoviruses for cancer gene therapy. Int J Cancer 2004; 110: 475–480.

    Article  CAS  PubMed  Google Scholar 

  25. Post DE, Khuri FR, Simons JW, Van Meir EG . Replicative oncolytic adenoviruses in multimodal cancer regimens. Hum Gene Ther 2003; 14: 933–946.

    Article  CAS  PubMed  Google Scholar 

  26. Barker DD, Berk AJ . Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 1987; 156: 107–121.

    Article  CAS  PubMed  Google Scholar 

  27. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  28. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    Article  CAS  PubMed  Google Scholar 

  29. Rogulski KR, Freytag SO, Zhang K, Gilbert JD, Paielli DL, Kim JH et al. In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res 2000; 60: 1193–1196.

    CAS  PubMed  Google Scholar 

  30. Dix BR, Edwards SJ, Braithwaite AW . Does the antitumor adenovirus ONYX-015/dl1520 selectively target cells defective in the p53 pathway? J Virol 2001; 75: 5443–5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geoerger B, Grill J, Opolon P, Morizet J, Aubert G, Terrier-Lacombe MJ et al. Oncolytic activity of the E1B-55 kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignant glioma xenografts. Cancer Res 2002; 62: 764–772.

    CAS  PubMed  Google Scholar 

  32. Hobom U, Dobbelstein M . E1B-55-kilodalton protein is not required to block p53-induced transcription during adenovirus infection. J Virol 2004; 78: 7685–7697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O'Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6: 611–623.

    Article  CAS  PubMed  Google Scholar 

  34. Steegenga WT, Riteco N, Bos JL . Infectivity and expression of the early adenovirus proteins are important regulators of wild-type and DeltaE1B adenovirus replication in human cells. Oncogene 1999; 18: 5032–5043.

    Article  CAS  PubMed  Google Scholar 

  35. Edwards SJ, Dix BR, Myers CJ, Dobson-Le D, Huschtscha L, Hibma M et al. Evidence that replication of the antitumor adenovirus ONYX-015 is not controlled by the p53 and p14(ARF) tumor suppressor genes. J Virol 2002; 76: 12483–12490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M et al. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA 1990; 87: 1973–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farshid M, Tabor E . Expression of oncogenes and tumor suppressor genes in human hepatocellular carcinoma and hepatoblastoma cell lines. J Med Virol 1992; 38: 235–239.

    Article  CAS  PubMed  Google Scholar 

  38. Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G, Gebhardt M et al. p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 1990; 10: 5772–5781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chandar N, Billig B, McMaster J, Novak J . Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer 1992; 65: 208–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morsy MA, Alford EL, Bett A, Graham FL, Caskey CT . Efficient adenoviral vector mediated ornithine transcarbamylase expression in deficient mouse and human hepatocytes. J Clin Invest 1993; 92: 1580–1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou H, Beaudet A . A new vector system with inducible cell line E2T for production of safer and higher titer adenoviral vectors. Virology 2000; 275: 348–357.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou H, O'Neal W, Morral N, Beaudet AL . Development of a complementing cell line and a system for construction of adenovirus vectors with E1 and E2a deleted. J Virol 1996; 70: 7030–7038.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sarnow P, Sullivan CA, Levine AJ . A monoclonal antibody detecting the adenovirus type 5-E1b-58kD tumor antigen: characterization of the E1b-58kD tumor antigen in adenovirus-infected and -transformed cells. Virology 1982; 120: 510–517.

    Article  CAS  PubMed  Google Scholar 

  44. Graham FL . Manipulation of adenovirus vectors. In: Murray EJ (ed). Methods in Molecular Biology, Vol. 7. The Humana Press Inc.: Clifton, NJ, 1991, pp 109–128.

    Google Scholar 

  45. Bett AJ, Haddara W, Prevec L, Graham FL . An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA 1994; 91: 8802–8806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shenk T . Adenoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds). Fields Virology, Vol. 2. Lippincott Williams & Wilkins: Philadelphia, PA, 2001, pp 2265–2300.

    Google Scholar 

  47. Osborne TF, Gaynor RB, Berk AJ . The TATA homology and the mRNA 5′ untranslated sequence are not required for expression of essential adenovirus E1A functions. Cell 1982; 29: 139–148.

    Article  CAS  PubMed  Google Scholar 

  48. Osborne TF, Berk AJ . Far upstream initiation sites for adenovirus early region 1A transcription are utilized after the onset of viral DNA replication. J Virol 1983; 45: 594–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Frisch SM, Mymryk JS . Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 2002; 3: 441–452.

    Article  CAS  PubMed  Google Scholar 

  50. Ries S, Korn WM . ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer 2002; 86: 5–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biederer C, Ries S, Brandts CH, McCormick F . Replication-selective viruses for cancer therapy. J Mol Med 2002; 80: 163–175.

    Article  CAS  PubMed  Google Scholar 

  52. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat Med 2001; 7: 781–787.

    Article  CAS  PubMed  Google Scholar 

  53. O'Shea CC, Soria C, Bagus B, McCormick F . Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 2005; 8: 61–74.

    Article  CAS  PubMed  Google Scholar 

  54. Mal A, Poon RY, Howe PH, Toyoshima H, Hunter T, Harter ML . Inactivation of p27Kip1 by the viral E1A oncoprotein in TGFbeta-treated cells. Nature 1996; 380: 262–265.

    Article  CAS  PubMed  Google Scholar 

  55. Whalen SG, Marcellus RC, Whalen A, Ahn NG, Ricciardi RP, Branton PE . Phosphorylation within the transactivation domain of adenovirus E1A protein by mitogen-activated protein kinase regulates expression of early region 4. J Virol 1997; 71: 3545–3553.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Donald Miller for helpful discussion and support. This work was supported by NIH Grant R01 CA90784-01A1 (KMM), Research Grant G030983 from Kentucky Lung Cancer Research Program, and Pilot Grant from Brown Cancer Center (HSZ). We thank other members in our laboratory for their help in this study, including Min Wang, Yanbin Dong, Hongying Hao, and Jorge G Gutierrez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H S Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Rao, XM., Snodgrass, C. et al. Selective replication of E1B55K-deleted adenoviruses depends on enhanced E1A expression in cancer cells. Cancer Gene Ther 13, 572–583 (2006). https://doi.org/10.1038/sj.cgt.7700923

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700923

Keywords

This article is cited by

Search

Quick links