Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transfection of Smac sensitizes tumor cells to etoposide-induced apoptosis and eradicates established human hepatoma in vivo

Abstract

A major concern in clinical treatment of cancers is resistance of tumors such as hepatocellular carcinoma (HCC) and osteosarcoma to current chemotherapy protocols. Here, we reported that overexpression of second mitochondria-derived activator of caspase (Smac) sensitized osteosarcoma cells and HCC cells in vitro to chemotherapeutic drugs-induced apoptosis. Constitutive expression of Smac resulted in enhanced Bax accumulation on mitochondria upon etoposide stimulation and inhibited Bcl-2-induced antiapoptosis activity. Thus, Smac would sensitize tumor cells to chemotherapeutic drugs in part through promoting Bax translocation to mitochondria and bypassing Bcl-2 block. Moreover, we demonstrated that blockade of Smac expression by antisense smac did not impair etoposide-induced apoptosis; however, p53-induced apoptosis was impaired in smac deficient Saos-2 cell. This suggested Smac might be required in p53-induced apoptosis. Most importantly, complete eradication of HepG2 xenografts in vivo was achieved upon combined therapy with Ad-Smac and 5-Fu. Thus, overexpression of Smac in tumor cells might be a potent strategy for cancer treatment by sensitization of tumor cells to chemotherapeutic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Johnstone RW, Ruefli AA, Lowe SW . Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108: 153–164.

    Article  CAS  Google Scholar 

  2. Igney FH, Krammer PH . Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer 2002; 2: 277–288.

    Article  CAS  Google Scholar 

  3. Reed JC . Apoptosis-based therapies. Nat Rev Drug Discov 2002; 1: 111–121.

    Article  CAS  Google Scholar 

  4. Hengartner MO . The biochemistry of apoptosis. Nature 2000; 407: 770–775.

    Article  CAS  Google Scholar 

  5. Liu X, Kim CN, Yang J, Jemmerson R, Wang X . Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157.

    Article  CAS  Google Scholar 

  6. Du C, Fang M, Li Y, Li L, Wang X . Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Article  CAS  Google Scholar 

  7. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    CAS  Google Scholar 

  8. Deveraux QL, Reed JC . IAP family proteins-suppressors of apoptosis. Gene Dev 1999; 13: 239–252.

    Article  CAS  Google Scholar 

  9. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112–116.

    Article  CAS  Google Scholar 

  10. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  Google Scholar 

  11. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    Article  CAS  Google Scholar 

  12. Adrain C, Creagh EM, Martin SJ . Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 2001; 20: 6627–6636.

    Article  CAS  Google Scholar 

  13. Deng Y, Lin Y, Wu X . TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Gene Dev 2002; 16: 33–45.

    Article  CAS  Google Scholar 

  14. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  Google Scholar 

  15. Vousden KH, Lu X . Live or let die: the cell's response to p53. Nature Rev Cancer 2002; 2: 594–604.

    Article  CAS  Google Scholar 

  16. Wei MC, Zong W, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001; 292: 727–730.

    Article  CAS  Google Scholar 

  17. Hsu YT, Wolter KG, Youle RJ . Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc Natl Acad Sci USA 1997; 94: 3668–3672.

    Article  CAS  Google Scholar 

  18. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ . Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997; 139: 1281–1292.

    Article  CAS  Google Scholar 

  19. Cory S, Adams JM . The bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2: 647–655.

    Article  CAS  Google Scholar 

  20. Kirkin V, Joos S, Zornig M . The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 2004; 1644: 229–249.

    Article  CAS  Google Scholar 

  21. Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H . Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology 2001; 34: 55–61.

    Article  CAS  Google Scholar 

  22. Watanabe J, Kushihata F, Honda K, Mominoki K, Matsuda S, Kobayashi N . Bcl-xL overexpression in human hepatocellular carcinoma. Int J Oncol 2002; 21: 515–519.

    CAS  PubMed  Google Scholar 

  23. Burden DA, Osheroff N . Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim Biophys Acta 1998; 1400: 139–154.

    Article  CAS  Google Scholar 

  24. Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL . The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem 2002; 277: 16547–16552.

    Article  CAS  Google Scholar 

  25. Li P, Dietz R, Harsdorf R . p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 1999; 18: 6027–6036.

    Article  CAS  Google Scholar 

  26. Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR . p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 2000; 275: 7337–7342.

    Article  CAS  Google Scholar 

  27. Okada H, Suh WK, Jin J, Woo M, Du C, Elia A et al. Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 2002; 22: 3509–3517.

    Article  CAS  Google Scholar 

  28. Antonsson B, Montessuit S, Sanchez B, Martinou JC . Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 2001; 276: 11615–11623.

    Article  CAS  Google Scholar 

  29. Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P . Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 2001; 276: 18361–18374.

    Article  CAS  Google Scholar 

  30. Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K et al. Regulated targeting of BAX to mitochondria. J Cell Biol 1998; 143: 207–215.

    Article  CAS  Google Scholar 

  31. Nechushtan A, Smith CL, Hsu YT, Youle RJ . Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 1999; 18: 2330–2341.

    Article  CAS  Google Scholar 

  32. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR . Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 1999; 274: 2225–2233.

    Article  CAS  Google Scholar 

  33. Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 2002; 277: 20301–20308.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Xiaodong Wang for providing antibody to Smac and plasmid encoding smac cDNA and Ms Yan Huang and Ms Xiaodong Li for their assistance with the experiments. This work is supported in part by grants from National Natural Science Foundation of China, Ministry of Science and Technology of China (973 program) and Shanghai Commission of Science and Technology. Dr Jian Zhao is an excellent investigator supported by a fellowship award from Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Jin, J., Zhang, X. et al. Transfection of Smac sensitizes tumor cells to etoposide-induced apoptosis and eradicates established human hepatoma in vivo. Cancer Gene Ther 13, 420–427 (2006). https://doi.org/10.1038/sj.cgt.7700910

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700910

Keywords

This article is cited by

Search

Quick links