Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic replication-competent adenovirus suppresses tumor angiogenesis through preserved E1A region

Abstract

An adenovirus (Adv) retaining normal E1A but lacking the 55 kDa E1B protein replicates preferentially in TP53-deficient cancer cells including pancreatic cancer cell lines, resulting in the oncolysis of the tumor. When tumor cells are exposed to hypoxia, hypoxia-inducible factor-1α (HIF-1α) is stabilized and activated to promote the transcription of several genes such as vascular endothelial growth factor (VEGF), but in the presence of E1A hypoxia-induced VEGF m-RNA synthesis is inhibited by E1A binding to p300. In this study, we demonstrated that the cancer cells infected with a mutant Adv in which the p300 binding site in E1A was partially deleted induced a higher expression level of VEGF as compared to those of Adv with normal E1A. An immunoprecipitation study for E1A confirmed that mutant E1A had a reduced binding capacity for p300. Although the expressions of HIF-1α m-RNA were almost the same in both cancer cells infected with the mutant Adv and those with the wild Adv, the amount of HIF-1α protein in cancer cells infected with the wild E1A Adv was lower than in those infected with the mutant E1A type Adv. In vivo, in contrast to the angiogenesis treated with mutant E1A, wild-E1A inhibited tumor angiogenesis significantly. These results suggested that E1A suppressed the production of VEGF and inhibited tumor angiogenesis by binding with p300, resulting in the inhibition of the HIF-1α-mediated transcription of genes through binding to HRE. This study demonstrates, for the first time, the effect of an oncolytic replication-competent Adv in inhibiting tumor angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Matsuno S, Egawa S, Fukuyama S, Motoi F, Sunamura M, Isaji S et al. Pancreatic Cancer Registry in Japan: 20 years of experience. Pancreas 2004; 28: 219–230.

    Article  PubMed  Google Scholar 

  2. Niederhuber JE, Brennan MF, Menck HR . The National Cancer Data Base report on pancreatic cancer. Cancer 1995; 76: 1671–1677.

    Article  CAS  PubMed  Google Scholar 

  3. Sperti C, Pasquali C, Picoli A, Pedrazzoli S . Survival after resection for ductal adenocarcinoma of the pancreas. Br J Surg 1996; 83: 625–631.

    Article  CAS  PubMed  Google Scholar 

  4. Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 1997; 57: 1731–1734.

    CAS  PubMed  Google Scholar 

  5. Moskaluk CA, Hruban RH, Kern SE . p16 and K-ras gene mutations in the intraductal precursor of human pancreatic adenocarcinoma. Cancer Res 1997; 57: 2140–2143.

    CAS  PubMed  Google Scholar 

  6. Hahns A, Schutte M, Shamsul Hoque ATM, Moskaluk CA, Dacoata LT, Rosemblum E et al. DPC4, a candidate tumour suppressor gene at the human chromosome 18q2.1. Science 1997; 272: 350–353.

    Google Scholar 

  7. Kawesca A, Ghaneh P, Andre’-Sandberg A, Ograed D, Skar R, Dawiskkiba S et al. K-ras oncogene subtype mutations are associated with survival but not the expression of p53, p16INK4A, p21WAF-1, Cyclin D1, erbb2 and errb3 in resected pancreatic ductal carcinoma. Int J Cancer 2000; 89: 469–474.

    Article  Google Scholar 

  8. Halloran CM, Chaneh P, Neoptolemos JP . Gene therapy for pancreatic cancer-current and prospective strategies. Surg Oncol 2000; 9: 181–191.

    Article  CAS  PubMed  Google Scholar 

  9. Sunamura M, Yatsuoka M, Motoi F, Duda DG, Kimura M, Abe T et al. Gene therapy for pancreatic cancer based on genetic characterization of the disease. J Hepatobiliary Pancreat Surg 2002; 9: 32–38.

    Article  PubMed  Google Scholar 

  10. Marcelli M, Cunningham GR, Walkup M, He Z, Sturgis L, Kagan C et al. Signalling pathway activated during apoptosis of the prostate cancer cell line LNCaP: over expression of caspase-7 as a new gene therapy strategy for prostate cancer. Cancer Res 1999; 59: 382–390.

    CAS  PubMed  Google Scholar 

  11. Yu JS, Sena-Esteves M, Paulus W, Breakfield XO, Reeves A . Retroviral delivery and tetracycline-dependent expression of IL-beta-converting enzyme (ICE) in a rat glioma model provides controlled induction of apoptotic death in tumour cells. Cancer Res 1996; 56: 5423–5427.

    CAS  PubMed  Google Scholar 

  12. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  13. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med 1997; 3: 639–645.

    Article  CAS  PubMed  Google Scholar 

  14. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1189.

    Article  CAS  PubMed  Google Scholar 

  15. Folkman J, Sing Y . Angiogenesis. J Biol Chem 1992; 267: 10931–10934.

    CAS  PubMed  Google Scholar 

  16. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med 1995; 1: 27–31.

    Article  CAS  PubMed  Google Scholar 

  17. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxic-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salceda S, Caro J . Hypoxia-inducible facter 1α (HIF-1α) protein is rapidly degrated by the ubiquitin/proteasome system under normoxic conditions. J Biol Chem 1997; 272: 22642–22647.

    Article  CAS  PubMed  Google Scholar 

  19. Arany Z, Huang LF, Eckner R, Bhattacharya S, Jiang C, Goldberg MA et al. An essential role of p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 1996; 93: 12969–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akanuma N, Kobayashi M, Horiuchi I, Suzuki A, Wang JC, Niizeki H et al. Constitutive Expression of hypoxia-inducible factor 1α renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 2001; 61: 6548–6554.

    Google Scholar 

  21. Ryan HE, Jo J, Johnason RS . HIF-1α is required for solid tomor function and embryonic vascularization. EMBO J 1998; 17: 3005–3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ et al. Hypoxia-inducible factor-1 modulates gene in solid tumor and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997; 94: 8104–8109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhong H, Marzo AMD, Laugher E, Lim M, Hilton DA, Zagzag D et al. Overexpression of hypoxia-inducible factor-1α in common human cancers and their metastasis. Cancer Res 1999; 59: 5830–5835.

    CAS  PubMed  Google Scholar 

  24. Ohh M, Park CW, Ivan M, Hoffman MA, Kim T-Y, Huang LE et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat Cell Biol 2000; 2: 423–427.

    Article  CAS  PubMed  Google Scholar 

  25. Tanimoto K, Makino Y, Pereira T, Poellinger L . Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J 2000; 19: 4298–4309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Forstythe JA, Jiang Bing-Hua Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL . Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor-1. Mol Cell Biol 1996; 16: 4604–4613.

    Article  Google Scholar 

  27. Ratcliffe PJ, Pugh CW, Maxwell PH . Targeting tumors though the HIF system. Nature Med 2000; 6: 1315–1316.

    Article  CAS  PubMed  Google Scholar 

  28. Motoi F, Sunamura M, Ding L, Duda GD, Yoshida Y, Zhang W et al. Effective gene therapy for pancreatic cancer by cytokines mediated by restricted replication-competent adenovirus. Hum Gene Ther 2000; 11: 223–235.

    Article  CAS  PubMed  Google Scholar 

  29. Whyte P, Buchkovich KL, Horowitz JM, Friedn SH, Raybuchay M, Weinberg RA et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334: 124–129.

    Article  CAS  PubMed  Google Scholar 

  30. Egan C, Bayley ST, Branton PE . Binding of the Rb1 protein to E1A products is required for adenovirus transformation. Oncogene 1989; 3: 383–388.

    Google Scholar 

  31. Eckner R, Ewen ME, Newsome D, Gerdes M, Decaprio JA, Lawrence JB et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein(p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 1994; 8: 869–884.

    Article  CAS  PubMed  Google Scholar 

  32. Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R . A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 1995; 374: 81–84.

    Article  CAS  PubMed  Google Scholar 

  33. Lundblad JR, Kwok RP, Laurance ME, Harter ML, Goodman RH . Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 1995; 374: 85–88.

    Article  CAS  PubMed  Google Scholar 

  34. Mymryk JS . Tumour suppressive properties of the adenovirus 5 E1A oncogene. Oncogene 1996; 13: 1581–1589.

    CAS  PubMed  Google Scholar 

  35. Kobari M, Hisano H, Matsuno S, Sato T, Kan M, Tachibana T . Establishment of six human pancreatic cancer cell lines and their sensitivities to anti-tumor drugs. Tohoku J Exp Med 1986; 150: 231–248.

    Article  CAS  PubMed  Google Scholar 

  36. Sun C, Yamato T, Furukawa T, Ohnishi Y, Kijima H, Horii A . Characterization of the mutation of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep 2001; 8: 89–92.

    CAS  PubMed  Google Scholar 

  37. Kamiya T, Kwon AH, Kanemaki T, Matsui Y, Uetsuji S, Okumura T et al. A simplified model of hypoxic injury in primary cultured rat hepatocytes. In Vitro Cell Dev Biol-Animal 1998; 34: 131–137.

    Article  CAS  Google Scholar 

  38. Kanegae Y, Lee G, Sato Y, Tanaka M, Nakai M, Sugano S et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expression site-specific Cre recombinase. Nucleic Acid Res 1995; 23: 3816–3821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eckhart L, Ban J, Ballaun C, Weinger W, Tschachler E . Reverse transcription polymerase chain reaction products of alternatively spliced mRNAs from DNA heteroduplexes and heteroduplex complexes. J Biol Chem 1999; 274: 2613–2615.

    Article  CAS  PubMed  Google Scholar 

  40. Duda GD, Sunamura M, Lozonschi L, Yokoyama T, Yatuoka T, Motoi F et al. Over expression of the p53-inducible brain-specific angiogenesis inhibitor I suppresses efficiently tumour angiogenesis. Br J Cancer 2002; 86: 490–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vlaykova T, Muhonen T, Hahka-Kemppinen M, Pyrhonen S, Jekunen A . Vascularity and prognosis of metastaic melanoma. Int J Cancer 1997; 74: 326–329.

    Article  CAS  PubMed  Google Scholar 

  42. Hoshida T, Sunamura M, Duda GD, Egawa S, Miyazaki S, Shineha R et al. Gene therapy for pancreatic cancer using an adenovirus vector encoding soluble flt-1 vascular endothelial growth factor receptor. Pancreas 2002; 25: 111–121.

    Article  PubMed  Google Scholar 

  43. Sun X, Kanwar JR, Lehnert K, Wang D, Krissansen GW . Gene transfer of antisense hypoxia inducible factor-1α enhances the therapeutic efficacy of cancer immunotherapy. Gene Therapy 2001; 8: 638–645.

    Article  CAS  PubMed  Google Scholar 

  44. Stebbins CE, Kaelin Jr WG, Pavletichn P . Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppresor function. Science 1999; 284: 455–461.

    Article  CAS  PubMed  Google Scholar 

  45. Min J-H, Yang H, Ivan M, Gertler F, Kaelin Jr WG, Pavletichn NP . Structure of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 2002; 296: 1886–1889.

    Article  CAS  PubMed  Google Scholar 

  46. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  47. Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62: 6070–6079.

    CAS  PubMed  Google Scholar 

  48. Jiong D, Freke K, Weiya X, Mien-Chie H . The NH2-Terminal and conserved region 2 domains of adenovirus E1A mediate two distinct mechanisms of tumor suppression. Cancer Res 2002; 62: 346–350.

    Google Scholar 

  49. Oonuma S, Sunamura M, Motoi F, Fukuyama S, Shimamura H, Yamauchi J et al. Gene therapy for intraperitoneally disseminated pancreatic cancers by Escherichia coli uracilphosphoribosiltransferase (UPRT) gene mediated by restricted replication-competent adenoviral vectors. Int J Cancer 2002; 102: 51–59.

    Article  CAS  PubMed  Google Scholar 

  50. Sunamura M, Hamada H, Motoi F, Oonuma M, Abe H, Saitoh Y et al. Oncolytic virotherapy as a novel strategy for pancreatic cancer. Pancreas 2004; 28: 326–329.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr David Kirn for providing the Adv vectors and appreciate the expert technical assistance of Emiko Shibuya, Hiroko Fujimura, and Keiko Inabe. This work was supported in part by two grants-in-aid for scientific research (12877187) from the Japanese Ministries of Education, Culture, Sports, Science, and Technology, and Health, Labor and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sunamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Sunamura, M., Motoi, F. et al. Oncolytic replication-competent adenovirus suppresses tumor angiogenesis through preserved E1A region. Cancer Gene Ther 13, 242–252 (2006). https://doi.org/10.1038/sj.cgt.7700902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700902

Keywords

This article is cited by

Search

Quick links