Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppressor of cytokine signaling-1 expression by infectivity-enhanced adenoviral vector inhibits IL-6-dependent proliferation of multiple myeloma cells

Abstract

Multiple myeloma (MM) accounts for 10% of hematological malignant disorders. Its refractory nature indicates the necessity of developing novel therapeutic modalities. Since interleukin 6 (IL-6) is one of the major growth factors for MM cells, we expressed suppressor of cytokine signaling-1 (SOCS-1), one of the blockades of IL-6 receptor downstream signaling, to suppress the proliferation of MM cells. Because MM cells are resistant to conventional adenoviral vector infection, we utilized infectivity-enhanced adenoviral vectors with an RGD4C motif in the adenoviral fiber-knob region (RGD-modified vector). In infectivity analysis, RGD-modified vectors were superior to unmodified controls in the majority of the MM cell lines tested. The overexpression of SOCS-1 using infectivity-enhanced adenoviral vectors achieved growth suppression in IL-6-dependent MM cells, but not in the IL-6-independent cells. IL-6-induced STAT3 phosphorylation was suppressed in IL-6-dependent cells, indicating that the signal transduction cascade of the IL-6 receptor signaling was blocked. In aggregate, SOCS-1 overexpression with RGD-modified adenoviral vectors achieved the antiproliferative effect in IL-6-dependent MM cells. These results provide an initial proof-of-principle of the anticancer effect of SOCS-1 expression vector as well as a promise for the future development of therapeutic modality for MM based on this vector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jemal A, Thomas A, Murray T, Thun M . Cancer statistics, 2002. CA Cancer J Clin 2002; 52: 23–47.

    Article  PubMed  Google Scholar 

  2. Bataille R, Harousseau JL . Multiple myeloma. N Engl J Med 1997; 336: 1657–1664.

    Article  CAS  PubMed  Google Scholar 

  3. Rajkumar SV, Gertz MA, Kyle RA, Greipp PR . Current therapy for multiple myeloma. Mayo Clin Proc 2002; 77: 813–822.

    Article  CAS  PubMed  Google Scholar 

  4. Fassas A, Tricot G . Results of high-dose treatment with autologous stem cell support in patients with multiple myeloma. Semin Hematol 2001; 38: 231–242.

    Article  CAS  PubMed  Google Scholar 

  5. Bensinger WI, Maloney D, Storb R . Allogeneic hematopoietic cell transplantation for multiple myeloma. Semin Hematol 2001; 38: 243–249.

    Article  CAS  PubMed  Google Scholar 

  6. Teoh G, Chen L, Urashima M, Tai YT, Celi LA, Chen D et al. Adenovirus vector-based purging of multiple myeloma cells. Blood 1998; 92: 4591–4601.

    CAS  PubMed  Google Scholar 

  7. Russell SJ, Dunbar CE . Gene therapy approaches for multiple myeloma. Semin Hematol 2001; 38: 268–275.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang XG, Klein B, Bataille R . Interleukin-6 is a potent myeloma-cell growth factor in patients with aggressive multiple myeloma. Blood 1989; 74: 11–13.

    CAS  PubMed  Google Scholar 

  9. Borset M, Waage A, Brekke OL, Helseth E . TNF and IL-6 are potent growth factors for OH-2, a novel human myeloma cell line. Eur J Haematol 1994; 53: 31–37.

    Article  CAS  PubMed  Google Scholar 

  10. Nishimoto N, Ogata A, Shima Y, Tani Y, Ogawa H, Nakagawa M et al. Oncostatin M, leukemia inhibitory factor, and interleukin 6 induce the proliferation of human plasmacytoma cells via the common signal transducer, gp130. J Exp Med 1994; 179: 1343–1347.

    Article  CAS  PubMed  Google Scholar 

  11. Tsunenari T, Akamatsu K, Kaiho S, Sato K, Tsuchiya M, Koishihara Y et al. Therapeutic potential of humanized anti-interleukin-6 receptor antibody: antitumor activity in xenograft model of multiple myeloma. Anticancer Res 1996; 16: 2537–2544.

    CAS  PubMed  Google Scholar 

  12. Tsunenari T, Koishihara Y, Nakamura A, Moriya M, Ohkawa H, Goto H et al. New xenograft model of multiple myeloma and efficacy of a humanized antibody against human interleukin-6 receptor. Blood 1997; 90: 2437–2444.

    CAS  PubMed  Google Scholar 

  13. Nishimoto N, Shima Y, Yoshizaki K, Kishimoto T . Myeloma biology and therapy. Present status and future developments. Hematol Oncol Clin N Am 1997; 11: 159–172.

    Article  CAS  Google Scholar 

  14. Anderson K . Advances in the biology of multiple myeloma: therapeutic applications. Semin Oncol 1999; 26: 10–22.

    CAS  PubMed  Google Scholar 

  15. Akira S . IL-6-regulated transcription factors. Int J Biochem Cell Biol 1997; 29: 1401–1418.

    Article  CAS  PubMed  Google Scholar 

  16. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L . Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998; 334 (Part 2): 297–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997; 387: 924–929.

    Article  CAS  PubMed  Google Scholar 

  19. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387: 917–921.

    Article  CAS  PubMed  Google Scholar 

  20. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387: 921–924.

    Article  CAS  PubMed  Google Scholar 

  21. Suematsu S, Hibi M, Sugita T, Saito M, Murakami M, Matsusaka T et al. Interleukin 6 (IL-6) and its receptor (IL-6R) in myeloma/plasmacytoma. Curr Top Microbiol Immunol 1990; 166: 13–22.

    CAS  PubMed  Google Scholar 

  22. Suzuki H, Yasukawa K, Saito T, Goitsuka R, Hasegawa A, Ohsugi Y et al. Anti-human interleukin-6 receptor antibody inhibits human myeloma growth in vivo. Eur J Immunol 1992; 22: 1989–1993.

    Article  CAS  PubMed  Google Scholar 

  23. Chauhan D, Uchiyama H, Urashima M, Yamamoto K, Anderson KC . Regulation of interleukin 6 in multiple myeloma and bone marrow stromal cells. Stem Cells 1995; 13 (Suppl 2): 35–39.

    CAS  PubMed  Google Scholar 

  24. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 2003; 4: 540–545.

    Article  CAS  PubMed  Google Scholar 

  25. Lang R, Pauleau AL, Parganas E, Takahashi Y, Mages J, Ihle JN et al. SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 2003; 4: 546–550.

    Article  CAS  PubMed  Google Scholar 

  26. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 2003; 4: 551–556.

    Article  CAS  PubMed  Google Scholar 

  27. Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J 1999; 18: 375–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Curiel DT, Gerritsen WR, Krul MR . Progress in cancer gene therapy. Cancer Gene Ther 2000; 7: 1197–1199.

    Article  CAS  PubMed  Google Scholar 

  29. Sachs M, Rauen K, Ramamurthy M, Dodson JL, De Marzo AM, Putzi MJ et al. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer. Urology 2002; 60: 531.

    Article  PubMed  Google Scholar 

  30. You Z, Fischer DC, Tong X, Hasenburg A, Aguilar-Cordova E, Kieback DG . Coxsackievirus-adenovirus receptor expression in ovarian cancer cell lines is associated with increased adenovirus transduction efficiency and transgene expression. Cancer Gene Ther 2001; 8: 168–175.

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez R, Vereecque R, Wickham TJ, Facon T, Hetuin D, Kovesdi I et al. Transduction of bone marrow cells by the AdZ.F(pK7) modified adenovirus demonstrates preferential gene transfer in myeloma cells. Hum Gene Ther 1999; 10: 2709–2717.

    Article  CAS  PubMed  Google Scholar 

  32. Krasnykh V, Dmitriev I, Navarro JG, Belousova N, Kashentseva E, Xiang J et al. Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res 2000; 60: 6784–6787.

    CAS  PubMed  Google Scholar 

  33. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT . Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 1998; 72: 1844–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Garcia-Gila M, Cabanas C, Garcia-Pardo A . Analysis of the activation state of alpha4beta1 integrin in human B cell lines derived from myeloma, leukemia or lymphoma. FEBS Lett 1997; 418: 337–340.

    Article  CAS  PubMed  Google Scholar 

  36. Pierschbacher MD, Ruoslahti E . Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984; 309: 30–33.

    Article  CAS  PubMed  Google Scholar 

  37. Okuno Y, Takahashi T, Suzuki A, Fukumoto M, Nakamura K, Fukui H et al. Acquisition of growth autonomy and tumorigenicity by an interleukin 6-dependent human myeloma cell line transfected with interleukin 6 cDNA. Exp Hematol 1992; 20: 395–400.

    CAS  PubMed  Google Scholar 

  38. Matsuda T, Hirano T, Kishimoto T . Establishment of an interleukin 6 (IL 6)/B cell stimulatory factor 2-dependent cell line and preparation of anti-IL 6 monoclonal antibodies. Eur J Immunol 1988; 18: 951–956.

    Article  CAS  PubMed  Google Scholar 

  39. Aarden LA, De Groot ER, Schaap OL, Lansdorp PM . Production of hybridoma growth factor by human monocytes. Eur J Immunol 1987; 17: 1411–1416.

    Article  CAS  PubMed  Google Scholar 

  40. Goto H, Shimazaki C, Tatsumi T, Yamagata N, Fujita N, Tsuchiya M et al. Establishment of a novel myeloma cell line KPMM2 carrying t(3;14)(q21;q32), which proliferates specifically in response to interleukin-6 through an autocrine mechanism. Leukemia 1995; 9: 711–718.

    CAS  PubMed  Google Scholar 

  41. Namba M, Ohtsuki T, Mori M, Togawa A, Wada H, Sugihara T et al. Establishment of five human myeloma cell lines. In vitro Cell Dev Biol 1989; 25: 723–729.

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu S, Takiguchi T, Sugai S, Matsuoka M, Konda S . An established CD4+ T lymphoma cell line derived from a patient with so-called Lennert's lymphoma: possible roles of cytokines in histopathogenesis. Blood 1988; 71: 196–203.

    CAS  PubMed  Google Scholar 

  43. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto M, Curiel DT . Nonreplicating DNA viral vectors for suicide gene therapy: the adenoviral vectors. Methods Mol Med 2004; 90: 61–70.

    CAS  PubMed  Google Scholar 

  45. Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T et al. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc Natl Acad Sci USA 1998; 95: 13130–13134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986; 324: 73–76.

    Article  CAS  PubMed  Google Scholar 

  47. Klein B, Zhang XG, Jourdan M, Portier M, Bataille R . Interleukin-6 is a major myeloma cell growth factor in vitro and in vivo especially in patients with terminal disease. Curr Top Microbiol Immunol 1990; 166: 23–31.

    CAS  PubMed  Google Scholar 

  48. Westendorf JJ, Ahmann GJ, Greipp PR, Witzig TE, Lust JA, Jelinek DF . Establishment and characterization of three myeloma cell lines that demonstrate variable cytokine responses and abilities to produce autocrine interleukin-6. Leukemia 1996; 10: 866–876.

    CAS  PubMed  Google Scholar 

  49. Schwab G, Siegall CB, Aarden LA, Neckers LM, Nordan RP . Characterization of an interleukin-6-mediated autocrine growth loop in the human multiple myeloma cell line, U266. Blood 1991; 77: 587–593.

    CAS  PubMed  Google Scholar 

  50. Hitzler JK, Martinez-Valdez H, Bergsagel DB, Minden MD, Messner HA . Role of interleukin-6 in the proliferation of human multiple myeloma cell lines OCI-My 1 to 7 established from patients with advanced stage of the disease. Blood 1991; 78: 1996–2004.

    CAS  PubMed  Google Scholar 

  51. Tsunenari T, Akamatsu K, Kaiho S, Sato K, Tsuchiya M, Koishihara Y et al. Therapeutic potential of humanized anti-interleukin-6 receptor antibody: antitumor activity in xenograft model of multiple myeloma. Anticancer Res 1996; 16: 2537–2544.

    CAS  PubMed  Google Scholar 

  52. Hirano T, Ishihara K, Hibi M . Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19: 2548–2556.

    Article  CAS  PubMed  Google Scholar 

  53. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T et al. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci USA 1996; 93: 3963–3966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eling DJ, Johnson PA, Sharma S, Tufaro F, Kipps TJ . Chronic lymphocytic leukemia B cells are highly sensitive to infection by herpes simplex virus-1 via herpesvirus-entry-mediator A. Gene Therapy 2000; 7: 1210–1216.

    Article  CAS  PubMed  Google Scholar 

  55. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol 1996; 14: 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  56. Wickham TJ, Tzeng E, Shears II LL, Roelvink PW, Li Y, Lee GM et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71: 8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001; 97: 3746–3754.

    Article  CAS  PubMed  Google Scholar 

  58. Tatsumi T, Shimazaki C, Goto H, Araki S, Sudo Y, Yamagata N et al. Expression of adhesion molecules on myeloma cells. Jpn J Cancer Res 1996; 87: 837–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Uchiyama H, Barut BA, Chauhan D, Cannistra SA, Anderson KC . Characterization of adhesion molecules on human myeloma cell lines. Blood 1992; 80: 2306–2314.

    CAS  PubMed  Google Scholar 

  60. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  61. Drew M, Barker HF, Ball J, Pearson C, Cook G, Franklin I . Very late antigen (VLA) expression by normal and neoplastic human plasma cells; including an assessment of antibodies submitted to the Vth International Workshop on Leucocyte Differentiation Antigens using human myeloma cell lines. Leuk Res 1996; 20: 619–624.

    Article  CAS  PubMed  Google Scholar 

  62. Ruoslahti E . RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12: 697–715.

    Article  CAS  PubMed  Google Scholar 

  63. Krebs DL, Hilton DJ . SOCS proteins: negative regulators of cytokine signaling. Stem Cells 2001; 19: 378–387.

    Article  CAS  PubMed  Google Scholar 

  64. Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 1999; 18: 1309–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He TC, Jiang N, Zhuang H, Wojchowski DM . Erythropoietin-induced recruitment of Shc via a receptor phosphotyrosine-independent, Jak2-associated pathway. J Biol Chem 1995; 270: 11055–11061.

    Article  CAS  PubMed  Google Scholar 

  66. Winston LA, Hunter T . JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J Biol Chem 1995; 270: 30837–30840.

    Article  CAS  PubMed  Google Scholar 

  67. Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL et al. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 1997; 159: 2212–2221.

    CAS  PubMed  Google Scholar 

  68. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115.

    Article  CAS  PubMed  Google Scholar 

  69. Hideshima T, Nakamura N, Chauhan D, Anderson KC . Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001; 20: 5991–6000.

    Article  CAS  PubMed  Google Scholar 

  70. Ilangumaran S, Ramanathan S, La Rose J, Poussier P, Rottapel R . Suppressor of cytokine signaling 1 regulates IL-15 receptor signaling in CD8+CD44high memory T lymphocytes. J Immunol 2003; 171: 2435–2445.

    Article  CAS  PubMed  Google Scholar 

  71. Naka T, Fujimoto M, Kishimoto T . Negative regulation of cytokine signaling: STAT-induced STAT inhibitor. Trends Biochem Sci 1999; 24: 394–398.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Organization for Rare Disorders, Research Grant Program for Multiple Myeloma to Masato Yamamoto, and by a Grant-in-Aid of the Ministry of Health, Labor and Welfare of Japan to Norihiro Nihsimoto. We thank Dr Victor Krasnykh for providing the Ad backbone plasmid for infectivity-enhanced vectors, and Dr Kazuyuki Yoshizaki and Long Le for excellent advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Nishimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, M., Nishimoto, N., Davydova, J. et al. Suppressor of cytokine signaling-1 expression by infectivity-enhanced adenoviral vector inhibits IL-6-dependent proliferation of multiple myeloma cells. Cancer Gene Ther 13, 194–202 (2006). https://doi.org/10.1038/sj.cgt.7700873

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700873

Keywords

This article is cited by

Search

Quick links