Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A tumor-specific conditionally replicative adenovirus vector expressing TRAIL for gene therapy of hepatocellular carcinoma

Abstract

We constructed a novel hepatocellular carcinoma-specific conditionally replicative adenovirus (CRAd). This adenovirus, designated Ad.HS4.AFP.E1A/TRAIL, expresses E1A to mediate viral replication and TRAIL to enhance HCC-killing efficacy under the control of a modified AFP promoter. An insulator HS-4 was placed in front of the AFP promoter to enhance the fidelity of the heterologous promoter. This virus was shown to have specific cytolytic activity in AFP-expressing HCC cells in vitro. Furthermore, the replication efficiency of Ad.HS4.AFP.E1A/TRAIL correlated well with AFP expression of the host cells, showing a 100-fold and 1 000 000-fold decrease in the low-and non-AFP-expressing HCC cells, respectively, compared to the high AFP-expressing HCC cells. An increase in mRNA of TRAIL and the elevated Caspase-3 activity were also observed in Ad.HS4.AFP.E1A/TRAIL-infected HCC cells. These results indicated that TRAIL expression from the viral vector activated the Caspase-3 enzymatic capacity and the HCC cells were sensitive to TRAIL. In vivo, Ad.HS4.AFP.E1A/TRAIL effectively prevented the growth of low AFP-expressing BEL-7404 xenografts. These results indicate that Ad.HS4.AFP.E1A/TRAIL could provide a new strategy of gene therapy for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

CRAd:

conditionally replicative adenovirus

IRES:

internal ribosome entry site

HCC:

hepatocellular carcinoma

AFP:

α-fetoprotein

TNF:

tumor necrosis factor

TRAIL:

TNF-related apoptosis inducing ligand

MTS:

3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

MOI:

multiplicity of infection

PFU:

plaque-forming units

RT-PCR:

reverse transcrption-PCR

CAR:

coxsackie-adenovirus receptor

Ad5.WT:

wild-type adenovirus 5

CPE:

cytopathic effect

DDP:

cis-diamminedichloroplatinum

References

  1. Zhu AX . Hepatocellular carcinoma: are we making progress? Cancer Invest 2003; 21: 418–428.

    Article  PubMed  Google Scholar 

  2. Llovet JM, Beaugrand M . Hepatocellular carcinoma: present status and future prospects. J Hepat 2003; 38: 136–149.

    Article  Google Scholar 

  3. Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999; 10: 1721–1733.

    Article  CAS  PubMed  Google Scholar 

  4. Tangkijvanich P, Anukulkarnkusol N, Suwangool P, Lertmaharit S, Hanvivatvong O, Kullavanijaya P et al. Clinical characteristics and prognosis of hepatocellular carcinoma: analysis based on serum alpha-fetoprotein levels. J Clin Gastroenterol 2000; 31: 302–308.

    Article  CAS  PubMed  Google Scholar 

  5. Camper SA, Tilghman SM . The activation and silencing of gene transcription in the liver. Biotechnology 1991; 16: 81–87.

    CAS  PubMed  Google Scholar 

  6. Nakabayashi H, Hashimoto T, Miyao Y, Tjong KK, Chan J, Tamaoki T . A position-dependent silencer plays a major role in repressing alpha-fetoprotein expression in human hepatoma. Mol Cell Biol 1991; 11: 5885–5893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohashi M, Kanai F, Tateishi K, Taniguchi H, Marignani PA, Yoshida Y et al. Target gene therapy for a-fetoprotein-producing hepatocellular carcinoma by E1B55k-attenuated adenovirus. Biochem Biophys Res Commun 2001; 282: 529–535.

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Yu DC, Chen Y, Amin P, Zhang H, Nguyen N et al. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res 2001; 61: 6428–6436.

    CAS  PubMed  Google Scholar 

  9. Steinwaerder DS, Lieber A . Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Ther 2000; 7: 556–567.

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto M, Davydova J, Takayama K, Alemany R, Curiel DT . Transcription initiation activity of adenovirus left-end sequence in adenovirus vectors with e1 deleted. J Virol 2003; 77: 1633–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ye X, Liang M, Meng X, Ren X, Chen H, Li ZY et al. Insulation from viral transcriptional regulatory elements enables improvement to hepatoma specific gene expression from adenovirus vectors. Biochem Biophics Res Commun 2003; 307: 759–764.

    Article  CAS  Google Scholar 

  12. Kim K, Fisher MJ, Xu SQ, el-Deiry WS . Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 2000; 6: 335–346.

    CAS  PubMed  Google Scholar 

  13. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  14. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J et al. The receptor for the cytotoxic ligand TRAIL. Science 1997; 276: 111–113.

    Article  CAS  PubMed  Google Scholar 

  15. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 1997; 16: 5386–5397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997; 186: 1165–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG . The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997; 7: 813–820.

    Article  CAS  PubMed  Google Scholar 

  18. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273: 14363–14367.

    Article  CAS  PubMed  Google Scholar 

  19. Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 2001; 299: 31–38.

    CAS  PubMed  Google Scholar 

  20. LeBlanc HN, Ashkenazi A . Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003; 10: 66–75.

    Article  CAS  PubMed  Google Scholar 

  21. Benedict CA, Norris PS, Prigozy TI, Bodmer JL, Mahr JA, Garnett CT et al. Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2. J Biol Chem 2001; 276: 3270–3278.

    Article  CAS  PubMed  Google Scholar 

  22. Tollefson AE, Toth K, Doronin K, Kuppuswamy M, Doronina OA, Lichtenstein DL et al. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. J Virol 2001; 75: 8875–8887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu ZG, Du JJ, Zhang X, Cheng ZH, Ma ZZ, Xiao HS et al. A novel liver-specific zona pellucida domain containing protein that is expressed rarely in hepatocellular carcinoma. Hepatology 2003; 38: 735–744.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao H, Xu YH . Mad-overexpression down regulates the malignant growth and p53 mediated apoptosis in human hepatocellular carcinoma BEL-7404 cells. Cell Res 1999; 9: 51–59.

    Article  CAS  PubMed  Google Scholar 

  25. Bruder JT, Appiah A, Kirkman III WM, Chen P, Tian J, Reddy D et al. Improved production of adenovirus vectors expressing apoptotic transgenes. Hum Gene Ther 2000; 11: 139–149.

    Article  CAS  PubMed  Google Scholar 

  26. Steinwaerder DS, Carlson CA, Lieber A . DNA replication of first-generation adenovirus vectors in tumor cells. Hum Gene Ther 2000; 11: 1933–1948.

    Article  CAS  PubMed  Google Scholar 

  27. Bernt K, Liang M, Ye X, Ni S, Li ZY, Ye SL et al. A new type of adenovirus vector that utilizes homologous recombination to achieve tumor-specific replication. J Virol 2002; 76: 10994–11002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu DC, Sakamoto GT, Henderson DR . Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res 1999; 59: 1498–1504.

    CAS  PubMed  Google Scholar 

  30. Shenk T, Flint J . Transcriptional and transforming activities of the adenovirus E1A proteins. Adv Cancer Res 1991; 57: 47–85.

    Article  CAS  PubMed  Google Scholar 

  31. Carambula SF, Matikainen T, Lynch MP, Flavell RA, Goncalves PB, Tilly JL et al. Caspase-3 is a pivotal mediator of apoptosis during regression of the ovarian corpus luteum. Endocrinology 2002; 143: 1495–1501.

    Article  CAS  PubMed  Google Scholar 

  32. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997; 71: 8798–8807.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Takahashi M, Sato T, Sagawa T, Lu Y, Sato Y, Iyama S et al. E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-expressing hepatocellular carcinoma and eradication of established tumor. Mol Ther 2002; 5: 627–634.

    Article  CAS  PubMed  Google Scholar 

  34. Yamanaka T, Shiraki K, Sugimoto K, Ito T, Fujikawa K, Ito M et al. Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 2000; 32: 482–490.

    Article  CAS  PubMed  Google Scholar 

  35. Kagawa S, He C, Gu J, Koch P, Rha SJ, Roth JA et al. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 2001; 61: 3330–3338.

    CAS  PubMed  Google Scholar 

  36. Routes JM, Ryan S, Clase A, Miura T, Kuhl A, Potter TA et al. Adenovirus E1A oncogene expression in tumor cells enhances killing by TNF-related apoptosis-inducing ligand (TRAIL). J Immunol 2000; 165: 4522–4527.

    Article  CAS  PubMed  Google Scholar 

  37. Sundararajan R, Cuconati A, Nelson D, White E . Tumor necrosis factor-alpha induces Bax-Bak interaction and apoptosis, which is inhibited by adenovirus E1B 19K. J Biol Chem 2001; 276: 45120–45127.

    Article  CAS  PubMed  Google Scholar 

  38. Ninomiya T, Mihara K, Fushimi K, Hayashi Y, Hashimoto-Tamaoki T, Tamaoki T . Regulation of the alpha-fetoprotein gene by the isoforms of ATBF1 transcription factor in human hepatoma. Hepatology 2002; 35: 82–87.

    Article  CAS  PubMed  Google Scholar 

  39. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bennett EM, Bennink JR, Yewdell JW, Brodsky FM . Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression. J Immunol 1999; 162: 5049–5052.

    CAS  PubMed  Google Scholar 

  41. Kim J, Smith T, Idamakanti N, Mulgrew K, Kaloss M, Kylefjord H et al. Targeting adenoviral vectors by using the extracellular domain of the coxsackie-adenovirus receptor: improved potency via trimerization. J Virol 2002; 76: 1892–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hemminki A, Kanerva A, Liu B, Wang M, Alvarez RD, Siegal GP et al. Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res 2003; 63: 847–853.

    CAS  PubMed  Google Scholar 

  43. Mizuguchi H, Hayakawa T . Adenovirus vectors containing chimeric type 5 and type 35 fiber proteins exhibit altered and expanded tropism and increase the size limit of foreign genes. Gene 2002; 285: 69–77.

    Article  CAS  PubMed  Google Scholar 

  44. Shayakhmetov DM, Lieber A . Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol 2000; 74: 10274–10286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Andre Lieber for providing Ad5.WT. We also thank Pavel Sova and Chang-Xing Shi for helpful discussion and thank Chen Wang and Mihoko Kato for critically reviewing the manuscript. The work was supported in part by National 863 Program of China Grant 2001AA217131 and 2004AA217051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, XW., Liang, M., Meng, X. et al. A tumor-specific conditionally replicative adenovirus vector expressing TRAIL for gene therapy of hepatocellular carcinoma. Cancer Gene Ther 13, 159–168 (2006). https://doi.org/10.1038/sj.cgt.7700868

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700868

Keywords

This article is cited by

Search

Quick links