Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

RNA interference and potential therapeutic applications of short interfering RNAs

Abstract

RNA interference is an endogenous gene-silencing mechanism that involves double-stranded RNA-mediated sequence-specific mRNA degradation. The discovery of this pathway together with the elucidation of the structure and function of short interfering RNAs — the effector molecules of RNA interference — has had an enormous impact on experimental biology. RNA interference technologies are currently the most widely utilized techniques in functional genomic studies. Furthermore, there is an intense research effort aimed at developing short interfering RNAs for therapeutic purposes. A number of proof-of-principle experiments have demonstrated the clinical potential of appropriately designed short interfering RNAs in various diseases including viral infections, cancer and neurodegenerative disorders. Already, in such a short time from their discovery, Acuity Pharmaceuticals (August 2004) and Sirna Therapeutics (September 2004) have filed Investigational New Drug applications with the US FDA to begin clinical trials with modified siRNA molecules in patients with age-related macular degeneration. This review will give a brief overview of the mechanism of RNA interference and applications of the pathway in experimental biology will be discussed. The article will focus on recent developments related to the use of RNA interference technologies in mammalian systems and on potential clinical applications of short interfering RNA-mediated RNA interference.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811.

    Article  CAS  PubMed  Google Scholar 

  2. Napoli C, Lemieux C, Jorgensen R . Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA . Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol. 1996;31:957–973.

    CAS  PubMed  Google Scholar 

  4. Cogoni C, Macino G . Post-transcriptional gene silencing across kingdoms. Curr Opin Genet Dev. 2000;10:638–643.

    CAS  PubMed  Google Scholar 

  5. Gura T . A silence that speaks volumes. Nature. 2000;404:804–808.

    CAS  PubMed  Google Scholar 

  6. Hammond SM, Caudy AA, Hannon GJ . Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet. 2001;2:110–119.

    Article  CAS  PubMed  Google Scholar 

  7. Guo S, Kemphues KJ . par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995;81:611–620.

    CAS  PubMed  Google Scholar 

  8. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T . Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877–6888.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dorsett Y, Tuschl T . siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004;3:318–329.

    CAS  PubMed  Google Scholar 

  10. Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–366.

    CAS  PubMed  Google Scholar 

  11. Zamore PD . Ancient pathways programmed by small RNAs. Science. 2002;296:1265–1269.

    CAS  PubMed  Google Scholar 

  12. Dillin A . The specifics of small interfering RNA specificity. Proc Natl Acad Sci USA. 2003;100:6289–6291.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Novina CD, Sharp PA . The RNAi revolution. Nature. 2004;430:161–164.

    CAS  PubMed  Google Scholar 

  14. Lee Y, Jeon K, Lee JT, Kim S, Kim VN . MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21:4663–4670.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Olsen PH, Ambros V . The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216:671–680.

    CAS  PubMed  Google Scholar 

  16. Wightman B, Ha I, Ruvkun G . Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–862.

    CAS  PubMed  Google Scholar 

  17. Nelson PT, Hatzigeorgiou AG, Mourelatos Z . miRNP: mRNA association in polyribosomes in a human neuronal cell line. RNA. 2004;10:387–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J, Krichevsky A, Grad Y, et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci USA. 2004;101:360–365.

    CAS  PubMed  Google Scholar 

  19. Hutvagner G, Zamore PD . A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:2056–2060.

    CAS  PubMed  Google Scholar 

  20. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106:23–34.

    CAS  PubMed  Google Scholar 

  21. Carrington JC, Ambros V . Role of microRNAs in plant and animal development. Science. 2003;301:336–338.

    CAS  PubMed  Google Scholar 

  22. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.

    CAS  PubMed  Google Scholar 

  23. Voinnet O . RNA silencing as a plant immune system against viruses. Trends Genet. 2001;17:449–459.

    CAS  PubMed  Google Scholar 

  24. Li H, Li WX, Ding SW . Induction and suppression of RNA silencing by an animal virus. Science. 2002;296:1319–1321.

    CAS  PubMed  Google Scholar 

  25. Tabara H, Sarkissian M, Kelly WG, et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999;99:123–132.

    CAS  PubMed  Google Scholar 

  26. Verdel A, Jia S, Gerber S, et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science. 2004; 303:672–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003;421:231–237.

    CAS  PubMed  Google Scholar 

  28. Ashrafi K, Chang FY, Watts JL, et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature. 2003;421:268–272.

    CAS  PubMed  Google Scholar 

  29. Maeda I, Kohara Y, Yamamoto M, Sugimoto A . Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol. 2001;11:171–176.

    CAS  PubMed  Google Scholar 

  30. Simmer F, Moorman C, van der Linden AM, et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003;1:E12.

    PubMed  PubMed Central  Google Scholar 

  31. Vastenhouw NL, Fischer SE, Robert VJ, et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr Biol. 2003;13:1311–1316.

    CAS  PubMed  Google Scholar 

  32. Lum L, Yao S, Mozer B, et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science. 2003;299:2039–2045.

    CAS  PubMed  Google Scholar 

  33. Kiger AA, Baum B, Jones S, et al. A functional genomic analysis of cell morphology using RNA interference. J Biol. 2003;2:27.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boutros M, Kiger AA, Armknecht S, et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science. 2004;303:832–835.

    CAS  PubMed  Google Scholar 

  35. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD . How cells respond to interferons. Annu Rev Biochem. 1998;67:227–264.

    CAS  PubMed  Google Scholar 

  36. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498.

    CAS  PubMed  Google Scholar 

  37. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA . Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA. 2001;98:9742–9747.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bitko V, Barik S . Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol. 2001;1:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR . Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5:834–839.

    CAS  PubMed  Google Scholar 

  40. Moss EG, Taylor JM . Small-interfering RNAs in the radar of the interferon system. Nat Cell Biol. 2003;5:771–772.

    CAS  PubMed  Google Scholar 

  41. Bertrand JR, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C . Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun. 2002;296:1000–1004.

    CAS  PubMed  Google Scholar 

  42. Clayton J . RNA interference: the silent treatment. Nature. 2004;431:599–605.

    PubMed  Google Scholar 

  43. Braasch DA, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42:7967–7975.

    CAS  PubMed  Google Scholar 

  44. Chiu YL, Rana TM . RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell. 2002;10:549–561.

    CAS  PubMed  Google Scholar 

  45. Hannon GJ, Rossi JJ . Unlocking the potential of the human genome with RNA interference. Nature. 2004;431:371–378.

    CAS  PubMed  Google Scholar 

  46. Sioud M . Therapeutic siRNAs. Trends Pharmacol Sci. 2004;25:22–28.

    CAS  PubMed  Google Scholar 

  47. Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H . Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 2002;30:1757–1766.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kurreck J . Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem. 2003;270:1628–1644.

    CAS  PubMed  Google Scholar 

  49. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553.

    CAS  PubMed  Google Scholar 

  50. Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol. 2002;20:500–505.

    CAS  PubMed  Google Scholar 

  51. Miyagishi M, Taira K . U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol. 2002;20:497–500.

    CAS  PubMed  Google Scholar 

  52. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS . Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;16:948–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Paul CP, Good PD, Winer I, Engelke DR . Effective expression of small interfering RNA in human cells. Nat Biotechnol. 2002;20:505–508.

    CAS  PubMed  Google Scholar 

  54. Sui G, Soohoo C, Affar el B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA. 2002;99:5515–5520.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu JY, DeRuiter SL, Turner DL . RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA. 2002;99:6047–6052.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Reid T, Warren R, Kirn D . Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther. 2002;9:979–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsieh AC, Bo R, Manola J, et al. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res. 2004;32:893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature. 2003;424:797–801.

    CAS  PubMed  Google Scholar 

  59. Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 2004;428:431–437.

    CAS  PubMed  Google Scholar 

  60. Paddison PJ, Silva JM, Conklin DS, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature. 2004;428:427–431.

    CAS  PubMed  Google Scholar 

  61. Zheng L, Liu J, Batalov S, et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci USA. 2004;101:135–140.

    CAS  PubMed  Google Scholar 

  62. Luo B, Heard AD, Lodish HF . Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci USA. 2004;101:5494–5499.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K . Enzymatic production of RNAi libraries from cDNAs. Nat Genet. 2004;36:190–196.

    CAS  PubMed  Google Scholar 

  64. Sen G, Wehrman TS, Myers JW, Blau HM . Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat Genet. 2004;36:183–189.

    CAS  PubMed  Google Scholar 

  65. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA . RNA interference in adult mice. Nature. 2002;418:38–39.

    CAS  PubMed  Google Scholar 

  66. Matsuda T, Cepko CL . Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA. 2004;101:16–22.

    CAS  PubMed  Google Scholar 

  67. Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA . In vivo activity of nuclease-resistant siRNAs. RNA. 2004;10:766–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H . Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet. 2002;32:107–108.

    CAS  PubMed  Google Scholar 

  69. Sorensen DR, Leirdal M, Sioud M . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol. 2003;327:761–766.

    CAS  PubMed  Google Scholar 

  70. Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9:347–351.

    CAS  PubMed  Google Scholar 

  71. Zender L, Hutker S, Liedtke C, et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA. 2003;100:7797–7802.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002;2:243–247.

    CAS  PubMed  Google Scholar 

  73. Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ . Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med. 2003;9:1539–1544.

    CAS  PubMed  Google Scholar 

  74. Wiznerowicz M, Trono D . Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol. 2003;77:8957–8961.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Xia H, Mao Q, Paulson HL, Davidson BL . siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol. 2002;20:1006–1010.

    CAS  PubMed  Google Scholar 

  76. Hall J . Opinion: Unravelling the general properties of siRNAs: strength in numbers and lessons from the past. Nat Rev Genet. 2004;5:552–557.

    CAS  PubMed  Google Scholar 

  77. Marwick C . First “antisense” drug will treat CMV retinitis. JAMA. 1998;280:871.

    CAS  PubMed  Google Scholar 

  78. Safinya CR . Structures of lipid-DNA complexes: supramolecular assembly and gene delivery. Curr Opin Struct Biol. 2001;11:440–448.

    CAS  PubMed  Google Scholar 

  79. Templeton NS . Cationic liposome-mediated gene delivery in vivo. Biosci Rep. 2002;22:283–295.

    CAS  PubMed  Google Scholar 

  80. Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM . Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10:3667–3677.

    CAS  PubMed  Google Scholar 

  81. Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32:e149.

    PubMed  PubMed Central  Google Scholar 

  82. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–178.

    CAS  PubMed  Google Scholar 

  83. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003;21:639–644.

    CAS  PubMed  Google Scholar 

  84. Jacque JM, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature. 2002;418:435–438.

    CAS  PubMed  Google Scholar 

  85. Coburn GA, Cullen BR . Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol. 2002;76:9225–9231.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Surabhi RM, Gaynor RB . RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J Virol. 2002;76:12963–12973.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1 infection. Nat Med. 2002;8:681–686.

    CAS  PubMed  Google Scholar 

  88. Park WS, Miyano-Kurosaki N, Hayafune M, et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res. 2002;30:4830–4835.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Song E, Lee SK, Dykxhoorn DM, et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol. 2003;77:7174–7181.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Davidson BL, Paulson HL . Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol. 2004;3:145–149.

    CAS  PubMed  Google Scholar 

  91. Kittler R, Buchholz F . RNA interference: gene silencing in the fast lane. Semin Cancer Biol. 2003;13:259–265.

    CAS  PubMed  Google Scholar 

  92. Lu PY, Xie FY, Woodle MC . siRNA-mediated antitumorigenesis for drug target validation and therapeutics. Curr Opin Mol Ther. 2003;5:225–234.

    CAS  PubMed  Google Scholar 

  93. Wall NR, Shi Y . Small RNA: can RNA interference be exploited for therapy? Lancet. 2003;362:1401–1403.

    CAS  PubMed  Google Scholar 

  94. Bullock AN, Fersht AR . Rescuing the function of mutant p53. Nat Rev Cancer. 2001;1:68–76.

    CAS  PubMed  Google Scholar 

  95. Wilda M, Fuchs U, Wossmann W, Borkhardt A . Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene. 2002;21:5716–5724.

    CAS  PubMed  Google Scholar 

  96. Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, Coukos G . Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun. 2003;303:1169–1178.

    CAS  PubMed  Google Scholar 

  97. Jiang M, Milner J . Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev. 2003;17:832–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cioca DP, Aoki Y, Kiyosawa K . RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther. 2003;10:125–133.

    CAS  PubMed  Google Scholar 

  99. Wohlbold L, van der Kuip H, Miething C, et al. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood. 2003;102:2236–2239.

    CAS  PubMed  Google Scholar 

  100. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M . Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood. 2003;101:1566–1569.

    CAS  PubMed  Google Scholar 

  101. Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94:15–21.

    CAS  PubMed  Google Scholar 

  102. Gottesman MM, Fojo T, Bates SE . Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    CAS  PubMed  Google Scholar 

  103. Volm M . Multidrug resistance and its reversal. Anticancer Res. 1998;18:2905–2917.

    CAS  PubMed  Google Scholar 

  104. Nieth C, Priebsch A, Stege A, Lage H . Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–150.

    CAS  PubMed  Google Scholar 

  105. Xu D, Kang H, Fisher M, Juliano RL . Strategies for inhibition of MDR1 gene expression. Mol Pharmacol. 2004;66:268–275.

    CAS  PubMed  Google Scholar 

  106. Yague E, Higgins CF, Raguz S . Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Therapy. 2004;11:1170–1174.

    CAS  PubMed  Google Scholar 

  107. Peng Z, Xiao Z, Wang Y, et al. Reversal of P-glycoprotein-mediated multidrug resistance with small interference RNA (siRNA) in leukemia cells. Cancer Gene Ther. 2004;11:707–712.

    CAS  PubMed  Google Scholar 

  108. Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC . Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 2004;11:915–923.

    CAS  PubMed  Google Scholar 

  109. Collis SJ, Swartz MJ, Nelson WG, DeWeese TL . Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res. 2003;63:1550–1554.

    CAS  PubMed  Google Scholar 

  110. Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis. 2003;9:210–216.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Australian Institute of Nuclear Science and Engineering is acknowledged. TCK was the recipient of AINSE awards. The Molecular Radiation Biology Laboratory is also supported by the National Health and Medical Research Council of Australia (Grant no. 209125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assam El-Osta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karagiannis, T., El-Osta, A. RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther 12, 787–795 (2005). https://doi.org/10.1038/sj.cgt.7700857

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700857

Keywords

This article is cited by

Search

Quick links