Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel gene transfer strategy that combines promoter and transgene activities for improved tumor cell inhibition

Abstract

Typically, gene transfer strategies utilize a promoter/transgene arrangement that treat these elements independently and do not offer any interplay between them. Our goal was to establish a promoter/transgene combination that would result in improvement in both expression and therapeutic effect by utilizing the transcriptional properties of p53 to drive its own expression as well as act as a tumor suppressor. The pCL retroviral system was modified in the U3 region of the 3′ LTR by the addition of a p53-responsive sequence (the PG element), creating the pCLPG system. Upon reverse transcription, the 5′ LTR is converted, as shown here, to a p53-dependent promoter. We also show, using a temperature-sensitive model, that the pCLPG system could be driven by p53 encoded within the virus construct and expression was modulated depending on the p53 phenotype, demonstrating a regulatory feedback loop. Moreover, the pCLPG system was shown to express the transgene at a higher level and to inhibit tumor cell proliferation more robustly than the original pCL system. This novel system employs the transgene to serve two purposes, drive viral expression and inhibit tumor cell proliferation. The pCLPG vectors represent a new gene transfer strategy of synergizing the promoter and transgene activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Valerio D, Einerhand MP, Wamsley PM, et al. Retrovirus-mediated gene transfer into embryonal carcinoma and hemopoietic stem cells: expression from a hybrid long terminal repeat. Gene. 1989;84:419–427.

    Article  CAS  PubMed  Google Scholar 

  2. Davis B, Linney E, Fan H . Suppression of leukaemia virus pathogenicity by polyoma virus enhancers. Nature. 1985;314:550–553.

    Article  CAS  PubMed  Google Scholar 

  3. Lorens JB, Jang Y, Rossi AB, et al. Optimization of regulated LTR-mediated expression. Virology. 2000;272:7–15.

    Article  CAS  PubMed  Google Scholar 

  4. Kim SH, Yu SS, Park JS, et al. Construction of retroviral vectors with improved safety, gene expression, and versatility. J Virol. 1998;72:994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Indraccolo S, Minuzzo S, Habeler W, et al. Modulation of Moloney leukemia virus long terminal repeat transcriptional activity by the murine CD4 silencer in retroviral vectors. Virology. 2000;276 ):83–92.

    Article  CAS  PubMed  Google Scholar 

  6. Mavria G, Jager U, Porter CD . Generation of a high titre retroviral vector for endothelial cell-specific gene expression in vivo. Gene Therapy. 2000;7:368–376.

    Article  CAS  PubMed  Google Scholar 

  7. Choi JK, Hoang N, Vilardi AM, et al. Hybrid HIV/MSCV LTR enhances transgene expression of lentiviral vectors in human CD34(+) hematopoietic cells. Stem Cells. 2001;19:236–246.

    Article  CAS  PubMed  Google Scholar 

  8. Lotti F, Menguzzato E, Rossi C, et al. Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement. J Virol. 2002;76:3996–4007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers. Science. 1991;253:49–53.

    Article  CAS  PubMed  Google Scholar 

  10. Ko LJ, Prives C . p53: puzzle and paradigm. Genes Dev. 1996;10:1054–1072.

    Article  CAS  PubMed  Google Scholar 

  11. el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–825.

    Article  CAS  PubMed  Google Scholar 

  12. Miyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–299.

    Article  CAS  PubMed  Google Scholar 

  13. Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9:1799–1805.

    CAS  PubMed  Google Scholar 

  14. Barak Y, Juven T, Haffner R, et al. mdm2 expression is induced by wild type p53 activity. EMBO J. 1993;12:461–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haupt Y, Barak Y, Oren M . Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J. 1996;15:1596–1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–299.

    Article  CAS  PubMed  Google Scholar 

  17. Funk WD, Pak DT, Karas RH, et al. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol. 1992;12:2866–2871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyashita T, Harigai M, Hanada M, et al. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 1994;54:3131–3135.

    CAS  PubMed  Google Scholar 

  19. Chin KV, Ueda K, Pastan I, et al. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science. 1992;255:459–462.

    Article  CAS  PubMed  Google Scholar 

  20. Strauss BE, Shivakumar C, Deb SP, et al. The MDR1 downstream promoter contains sequence-specific binding sites for wild-type p53. Biochemical & Biophysical Research Communications. 1995;217:825–831.

    Article  CAS  Google Scholar 

  21. Subler MA, Martin DW, Deb S . Inhibition of viral and cellular promoters by human wild-type p53. J Virol. 1992;66:4757–4762.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lowe SW, Schmitt EM, Smith SW, et al. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993;362:847–849.

    Article  CAS  PubMed  Google Scholar 

  23. Lowe SW, Ruley HE, Jacks T, et al. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74:957–967.

    Article  CAS  PubMed  Google Scholar 

  24. Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991;252:1708–1711.

    Article  CAS  PubMed  Google Scholar 

  25. Kern SE, Pietenpol JA, Thiagalingam S, et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992;256:827–830.

    Article  CAS  PubMed  Google Scholar 

  26. Naviaux RK, Costanzi E, Haas M, et al. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol. 1996;70:5701–5705.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson M, Dimitrov D, Vojta PJ, et al. Evidence for a p53-independent pathway for upregulation of SDI1/CIP1/WAF1/p21 RNA in human cells. Mol Carcinog. 1994;11:59–64.

    Article  CAS  PubMed  Google Scholar 

  28. Michieli P, Chedid M, Lin D, et al. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res. 1994;54:3391–3395.

    CAS  PubMed  Google Scholar 

  29. Strauss BE, Costanzi-Strauss E . pCLPG: a p53-driven retroviral system. Virology. 2004;321:165–172.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, Guo XY, Hu GY, et al. A temperature-sensitive mutant of human p53. EMBO J. 1994;13:2535–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Costanzi-Strauss E, Strauss BE, Naviaux RK, et al. Restoration of growth arrest by p16INK4, p21WAF1, pRB, and p53 is dependent on the integrity of the endogenous cell-cycle control pathways in human glioblastoma cell lines. Exp Cell Res. 1998;238:51–62.

    Article  CAS  PubMed  Google Scholar 

  32. DuBridge RB, Tang P, Hsia HC, et al. Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol. 1987;7:379–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strauss B, Fontes R, Lotfi C, et al. Retroviral transfer of the p16INK4a cDNA inhibits C6 glioma formation in Wistar rats. Cancer Cell Int. 2002;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bajgelman MC, Costanzi-Strauss E, Strauss BE . Exploration of critical parameters for transient retrovirus production. J Biotechnol. 2003;103:97–106.

    Article  CAS  PubMed  Google Scholar 

  35. Michalovitz D, Halevy O, Oren M . Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell. 1990;62:671–680.

    Article  CAS  PubMed  Google Scholar 

  36. Check E . Gene therapy put on hold as third child develops cancer. Nature. 2005;433:561.

    PubMed  Google Scholar 

  37. Sherr CJ, Weber JD . The ARF/p53 pathway. Curr Opin Genet Dev. 2000;10:94–99.

    Article  CAS  PubMed  Google Scholar 

  38. Huang Y, Tyler T, Saadatmandi N, et al. Enhanced tumor suppression by a p14ARF/p53 bicistronic adenovirus through increased p53 protein translation and stability. [erratum appears in Cancer Res. 2003 63(16):5171]. Cancer Res. 2003;63:3646–3653.

    CAS  PubMed  Google Scholar 

  39. Strauss BE, Haas M . The region 3′ to the major transcriptional start site of the MDR1 downstream promoter mediates activation by a subset of mutant P53 proteins. Biochem Biophys Res Commun. 1995;217:333–340.

    Article  CAS  PubMed  Google Scholar 

  40. Ugai H, Suzuki E, Inabe K, et al. Spontaneous mutations in the human gene for p53 in recombinant adenovirus during multiple passages in human embryonic kidney 293 cells. Biochem Biophys Res Commun. 2003;300:448–456.

    Article  CAS  PubMed  Google Scholar 

  41. Kaiser J . Gene therapy. RAC's advice: proceed with caution. Science. 2002;298:2113–2115.

    Article  CAS  PubMed  Google Scholar 

  42. Li Z, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking. Science. 2002;296:497.

    Article  CAS  PubMed  Google Scholar 

  43. Marshall E . Gene therapy. What to do when clear success comes with an unclear risk? Science. 2002;298:510–511.

    Article  CAS  PubMed  Google Scholar 

  44. Marshall E . Clinical research. Gene therapy a suspect in leukemia-like disease. Science. 2002;298:34–35.

    Article  CAS  PubMed  Google Scholar 

  45. Chin KV, Pastan I, Gottesman MM . Function and regulation of the human multidrug resistance gene. Adv Cancer Res. 1993;60:157–180.

    Article  CAS  PubMed  Google Scholar 

  46. Hesdorffer C, Ayello J, Ward M, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol. 1998;16:165–172.

    Article  CAS  PubMed  Google Scholar 

  47. Hanania EG, Giles RE, Kavanagh J, et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc Natl Acad Sci USA. 1996;93:15346–15351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abonour R, Williams DA, Einhorn L, et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells [see comment]. Nat Med. 2000;6:652–658.

    Article  CAS  PubMed  Google Scholar 

  49. Knipper R, Kuehlcke K, Schiedlmeier B, et al. Improved post-transcriptional processing of an MDR1 retrovirus elevates expression of multidrug resistance in primary human hematopoietic cells. Gene Ther. 2001;8:239–246.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Moshe Oren and Bert Vogelstein for kindly providing plasmids. This work was supported by FAPESP (98/15120-0, ECS and 00/12156-5, BES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan E Strauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauss, B., Bajgelman, M. & Costanzi-Strauss, E. A novel gene transfer strategy that combines promoter and transgene activities for improved tumor cell inhibition. Cancer Gene Ther 12, 935–946 (2005). https://doi.org/10.1038/sj.cgt.7700846

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700846

Keywords

This article is cited by

Search

Quick links