Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors

Abstract

We have created a novel cellular vehicle for gene therapy of malignant gliomas by transfection of murine bone marrow stroma cells (MSCs) with a cDNA encoding epidermal growth factor receptor (EGFR). These cells (EGFR-MSCs) demonstrate enhanced migratory responses toward glioma-conditioned media in comparison to primary MSCs in vitro. Enhanced migration of EGFR-MSC was at least partially dependent on EGF-EGFR, PI3-, MAP kinase kinase, and MAP kinases, protein kinase C, and actin polymerization. Unlike primary MSCs, EGFR-MSCs were resistant to FasL-mediated cytotoxicity and were capable of stimulating allogeneic mixed lymphocyte reaction, suggesting EGFR-MSCs possess suitable characteristics as vehicles for brain tumor immuno-gene therapy. Following injection at various sites, including the contralateral hemisphere in the brain of syngeneic mice, EGFR-MSCs were able to migrate toward GL261 gliomas or B16 melanoma in vivo. Finally, intratumoral injection with EGFR-MSC adenovirally engineered to secrete interferon-α to intracranial GL261 resulted in significantly prolonged survival in comparison to controls. These data indicate that EGFR-MSCs may serve as attractive vehicles for infiltrating brain malignancies such as malignant gliomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA. 2000;97:12846–12851.

    Article  CAS  Google Scholar 

  2. Gage FH . Mammalian neural stem cells. Science. 2000;287:1433–1438 (Review) (55 refs).

    Article  CAS  Google Scholar 

  3. Robertson JA . Ethics and policy in embryonic stem cell research. Kennedy Inst Ethics J. 1999;9:109–136.

    Article  Google Scholar 

  4. Deng Y, Guo X, Yuan Q, Li S . Efficiency of adenoviral vector mediated CTLA4Ig gene delivery into mesenchymal stem cells. Chin Med J (Engl.). 2003;116:1649–1654.

    CAS  Google Scholar 

  5. Dunn IF, Heese O, Black PM . Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol. 2000;50:121–137.

    Article  CAS  Google Scholar 

  6. Wilson AJ, Gibson PR . Role of epidermal growth factor receptor in basal and stimulated colonic epithelial cell migration in vitro. Exp Cell Res. 1999;250:187–196.

    Article  CAS  Google Scholar 

  7. Faber-Elman A, Solomon A, Abraham JA, Marikovsky M, Schwartz M . Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury: in vitro simulation. J Clin Invest. 1996;97:162–171.

    Article  CAS  Google Scholar 

  8. Qin P, Kurpakus MA . The role of laminin-5 in TGF alpha/EGF-mediated corneal epithelial cell motility. Exp Eye Res. 1998;66:569–579.

    Article  CAS  Google Scholar 

  9. Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB . Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene. 2001;20:4209–4218.

    Article  CAS  Google Scholar 

  10. El Obeid A, Bongcam-Rudloff E, Sorby M, Ostman A, Nister M, Westermark B . Cell scattering and migration induced by autocrine transforming growth factor alpha in human glioma cells in vitro. Cancer Res. 1997;57:5598–5604.

    CAS  PubMed  Google Scholar 

  11. Chicoine MR, Silbergeld DL . Mitogens as motogens. J Neurooncol. 1997;35:249–257.

    Article  CAS  Google Scholar 

  12. Pedersen PH, Ness GO, Engebraaten O, Bjerkvig R, Lillehaug JR, Laerum OD . Heterogeneous response to the growth factors [EGF, PDGF (bb), TGF-alpha, bFGF, IL-2] on glioma spheroid growth, migration and invasion. Int J Cancer. 1994;56:255–261.

    Article  CAS  Google Scholar 

  13. Mishima K, Higashiyama S, Asai A, et al. Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol (Berl.). 1998;96:322–328.

    Article  CAS  Google Scholar 

  14. Morse WR . Chinese Medicine. New York: Hoeber; 1938.

    Google Scholar 

  15. La Russa VF, Schwarzenberger P, Miller A, Agrawal K, Kolls J, Weiner R . Marrow stem cells, mesenchymal progenitor cells, and stromal progeny. Cancer Invest. 2002;20:110–123.

    Article  Google Scholar 

  16. Kopen GC, Prockop DJ, Phinney DG . Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999;96:10711–10716.

    Article  CAS  Google Scholar 

  17. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164:247–256.

    Article  CAS  Google Scholar 

  18. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ . Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc Natl Acad Sci USA. 1998;95:3908–3913.

    Article  CAS  Google Scholar 

  19. Yamada M, Suzu S, Tanaka-Douzono M, et al. Effect of cytokines on the proliferation/differentiation of stroma-initiating cells. J Cell Physiol. 2000;184:351–355.

    Article  CAS  Google Scholar 

  20. Chen P, Gupta K, Wells A . Cell movement elicited by epidermal growth factor receptor requires kinase and autophosphorylation but is separable from mitogenesis. J Cell Biol. 1994;124:547–555.

    Article  CAS  Google Scholar 

  21. Dieu MC, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med. 1998;188:373–386.

    Article  CAS  Google Scholar 

  22. Yanagihara S, Komura E, Nagafune J, Watarai H, Yamaguchi Y . EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J Immunol. 1998;161:3096–3102.

    CAS  PubMed  Google Scholar 

  23. Oyaizu N, Kayagaki N, Yagita H, Pahwa S, Ikawa Y . Requirement of cell–cell contact in the induction of Jurkat T cell apoptosis: the membrane-anchored but not soluble form of FasL can trigger anti-CD3-induced apoptosis in Jurkat T cells. Biochem Biophys Res Commun. 1997;238:670–675.

    Article  CAS  Google Scholar 

  24. Takeda K, Hayakawa Y, Smyth MJ, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med. 2001;7:94–100.

    Article  CAS  Google Scholar 

  25. Okada H, Tahara H, Shurin MR, et al. Bone marrow derived dendritic cells pulsed with a tumor specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer. 1998;78:196–201.

    Article  CAS  Google Scholar 

  26. Okada H, Tsugawa T, Sato H, et al. Delivery of Interferon-alpha transfected dendritic cells into central nervous system tumors enhances the antitumor efficacy of peripheral peptide-based vaccines. Cancer Res. 2004;64:5830–5838.

    Article  CAS  Google Scholar 

  27. Rappold I, Ziegler BL, Kohler I, et al. Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase. Blood. 1997;90:111–125.

    CAS  PubMed  Google Scholar 

  28. Saas P, Walker PR, Hahne M, et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest. 1997;99:1173–1178.

    Article  CAS  Google Scholar 

  29. Okada H, Yoshida J, Sokabe M, Wakabayashi T, Hagiwara M . Suppression of CD44 expression decreases migration and invasion of human glioma cells. Int J Cancer. 1996;66:255–260.

    Article  CAS  Google Scholar 

  30. Monaghan M, Mulligan KA, Gillespie H, et al. Epidermal growth factor up-regulates CD44-dependent astrocytoma invasion in vitro. J Pathol. 2000;192:519–525.

    Article  CAS  Google Scholar 

  31. Hackel PO, Zwick E, Prenzel N, Ullrich A . Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol. 1999;11:184–189.

    Article  CAS  Google Scholar 

  32. Sweeney C, Fambrough D, Huard C, et al. Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. J Biol Chem. 2001;276:22685–22698.

    Article  CAS  Google Scholar 

  33. Devine SM, Peter S, Martin BJ, Barry F, McIntosh KR . Mesenchymal stem cells: stealth and suppression. Cancer J. 2001;7 (Suppl 2):S76–S82.

    PubMed  Google Scholar 

  34. Abrahams VM, Kamsteeg M, Mor G . The Fas/Fas ligand system and cancer: immune privilege and apoptosis. Mol Biotechnol. 2003;25:19–30.

    Article  CAS  Google Scholar 

  35. Tamiya T, Wei MX, Chase M, et al. Transgene inheritance and retroviral infection contribute to the efficiency of gene expression in solid tumors inoculated with retroviral vector producer cells. Gene Ther. 1995;2:531–538.

    CAS  PubMed  Google Scholar 

  36. Okada H, Villa LA, Attanucci J, et al. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther. 2001;8:1157–1166.

    Article  CAS  Google Scholar 

  37. Smith JS, Tachibana I, Passe SM, et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst. 2001;93:1246–1256.

    Article  CAS  Google Scholar 

  38. Caric D, Raphael H, Viti J, Feathers A, Wancio D, Lillien L . EGFRs mediate chemotactic migration in the developing telencephalon. Development. 2001;128:4203–4216.

    CAS  PubMed  Google Scholar 

  39. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL . Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002;195:1145–1154.

    Article  CAS  Google Scholar 

  40. Kim CH, Broxmeyer HE . SLC/exodus2/6Ckine/TCA4 induces chemotaxis of hematopoietic progenitor cells: differential activity of ligands of CCR7, CXCR3, or CXCR4 in chemotaxis vs suppression of progenitor proliferation. J Leukoc Biol. 1999;66:455–461.

    Article  CAS  Google Scholar 

  41. Kruger JS, Reddy KB . Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Mol Cancer Res. 2003;1:801–809.

    CAS  PubMed  Google Scholar 

  42. Golubovskaya V, Beviglia L, Xu LH, Earp III HS, Craven R, Cance W . Dual inhibition of focal adhesion kinase and epidermal growth factor receptor pathways cooperatively induces death receptor-mediated apoptosis in human breast cancer cells. J Biol Chem. 2002;277:38978–38987.

    Article  CAS  Google Scholar 

  43. Musallam L, Ethier C, Haddad PS, Bilodeau M . Role of EGF receptor tyrosine kinase activity in antiapoptotic effect of EGF on mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol. 2001;280:G1360–G1369.

    Article  CAS  Google Scholar 

  44. Saas P, Walker PR, Hahne M . Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest. 1997;99:1173–1178.

    Article  CAS  Google Scholar 

  45. Wang X, McCullough KD, Franke TF, Holbrook NJ . Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem. 2000;275:14624–14631.

    Article  CAS  Google Scholar 

  46. Franke TF, Kaplan DR, Cantley LC . PI3K: downstream AKTion blocks apoptosis. Cell. 1997;88:435–437.

    Article  CAS  Google Scholar 

  47. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9:1195–1201.

    Article  CAS  Google Scholar 

  48. Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T . Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet. 2000;26:109–113.

    Article  CAS  Google Scholar 

  49. Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1:269–277.

    Article  CAS  Google Scholar 

  50. Okada H, Pollack IF, Lotze MT, et al. Gene therapy of malignant gliomas: a phase I study of IL4HSV-TK genemodified autologous tumor to elicit an immune response (clinical protocol). Human Gene Ther. 2000;11:637–653.

    Article  CAS  Google Scholar 

  51. Berens C, Hillen W . Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. Eur J Biochem. 2003;270:3109–3121.

    Article  CAS  Google Scholar 

  52. Hombauer H, Minguell JJ . Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. Br J Cancer. 2000;82:1290–1296.

    Article  CAS  Google Scholar 

  53. Maestroni GJ, Hertens E, Galli P . Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci. 1999;55:663–667.

    Article  CAS  Google Scholar 

  54. Cooper CR, Chay CH, Gendernalik JD, et al. Stromal factors involved in prostate carcinoma metastasis to bone. Cancer. 2003;97:739–747.

    Article  Google Scholar 

  55. Thyrell L, Erickson S, Zhivotovsky B, et al. Mechanisms of interferon-alpha induced apoptosis in malignant cells. Oncogene. 2002;21:1251–1262.

    Article  CAS  Google Scholar 

  56. Santini SM, Lapenta C, Logozzi M, et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med. 2000;191:1777–1788, 2000; 191: 1777–1788.

    Article  CAS  Google Scholar 

  57. Paquette RL, Hsu NC, Kiertscher SM, et al. Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukocyte Biol. 1998;64:358–367.

    Article  CAS  Google Scholar 

  58. Honda K, Sakaguchi S, Nakajima C, et al. Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc Natl Acad Sci USA. 2003;100:10872–10877.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by P01 NS40923 (IFP, SCW, HO) and a grant from the Copeland Fund of the Pittsburgh Foundation (HO). We thank Dr Manabu Hatano for helpful discussions in the review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideho Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, H., Kuwashima, N., Sakaida, T. et al. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther 12, 757–768 (2005). https://doi.org/10.1038/sj.cgt.7700827

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700827

Keywords

This article is cited by

Search

Quick links