Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis

Abstract

Tpr-Met, the oncogenic counterpart of the Met receptor, has been detected in gastric cancers, as well as in precursor lesions and in the adjacent normal gastric mucosa. This has prompted the suggestion that Tpr-Met may predispose to the development of gastric tumors. Given the sequence specificity of RNA interference, oncogenes activated by point mutation or rearrangements can be targeted while spearing the product of the wild-type allele. In this work, we report specific suppression of Tpr-Met expression and inhibition of Tpr-Met-mediated transformation and tumorigenesis by means of a short interfering RNA (siRNA) directed toward the Tpr-Met junction (anti-TM2). When delivered by a lentiviral vector, anti-TM2 siRNA was effective also in mouse embryonal fibroblasts or epithelial cells expressing high levels of Tpr-Met. Our results suggest that lentiviral-mediated delivery of anti-TM2 siRNA may be developed into a powerful tool to treat Tpr-Met-positive cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811.

    Article  CAS  Google Scholar 

  2. Kennerdell JR, Carthew RW . Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell. 1998;905:1017–1026.

    Article  Google Scholar 

  3. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553.

    Article  CAS  Google Scholar 

  4. Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol. 2002;20:500–505.

    Article  CAS  Google Scholar 

  5. Miyagishi M, Taira K . Development and application of siRNA expression vector. Nucleic Acids Res. 2002;2 (Suppl):113–114.

    Article  CAS  Google Scholar 

  6. Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;16:948–958.

    Article  CAS  Google Scholar 

  7. Kawasaki H, Taira K . Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 2003;31:700–707.

    Article  CAS  Google Scholar 

  8. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002;2:243–247.

    Article  CAS  Google Scholar 

  9. Barton GM, Medzhitov R . Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA. 2002;99:14943–14945.

    Article  CAS  Google Scholar 

  10. Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA. 2003;100:183–188.

    Article  CAS  Google Scholar 

  11. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet. 2003;33:401–406.

    Article  CAS  Google Scholar 

  12. van de Wetering M, Oving I, Muncan V, et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 2003;4:609–615.

    Article  CAS  Google Scholar 

  13. Czauderna F, Santel A, Hinz M, et al. Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res. 2003;31:e127.

    Article  Google Scholar 

  14. Chen Y, Stamatoyannopoulos G, Song CZ . Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res. 2003;63:4801–4804.

    CAS  PubMed  Google Scholar 

  15. Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–925.

    Article  CAS  Google Scholar 

  16. Tempest PR, Reeves BR, Spurr NK, et al. Activation of the met oncogene in the human MNNG-HOS cell line involves a chromosomal rearrangement. Carcinogenesis. 1986;7:2051–2057.

    Article  CAS  Google Scholar 

  17. Rodrigues GA, Park M . Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol. 1993;13:6711–6722.

    Article  CAS  Google Scholar 

  18. Sharashidze LK, Beniashvili DSh, Sherenesheva NI, et al. Induction of gastric cancer in monkeys by N-methyl-N-nitro-N-nitrosoguanidine (MNNG). Neoplasma. 1989;36:129–133.

    CAS  PubMed  Google Scholar 

  19. Soman NR, Correa P, Ruiz BA, et al. The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci USA. 1991;88:4892–4896.

    Article  CAS  Google Scholar 

  20. Yu J, Miehlke S, Ebert MP, et al. Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer. 2000;88:1801–1806.

    Article  CAS  Google Scholar 

  21. Deng D, Xin H . Formation of N-(nitrosomethyl)urea in stomachs of experimental pigs and human volunteers given fish sauce in vivo. J Agric Food Chem. 2000;48:2495–2498.

    Article  CAS  Google Scholar 

  22. Sen NP, Seaman SW, Badoo PA, et al. Formation of N-nitroso-N-methylurea in various samples of smoked/dried fish, fish sauce, seafoods, and ethnic fermented/pickled vegetables following incubation with nitrite under acidic conditions. J Agric Food Chem. 2001;49:2096–2103.

    Article  CAS  Google Scholar 

  23. Danilkovitch-Miagkova A, Zbar B . Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest. 2002;109:863–867.

    Article  CAS  Google Scholar 

  24. Lee JH, Han SU, Cho H, et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene. 2000;19:4947–4953.

    Article  CAS  Google Scholar 

  25. Ma PC, Kijima T, Maulik G . c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63:6272–6281.

    CAS  PubMed  Google Scholar 

  26. Shinomiya N, Vande Woude GF . Suppression of met expression: a possible cancer treatment. Clin Cancer Res. 2003;9:5085–5090.

    CAS  PubMed  Google Scholar 

  27. Ma PC, Maulik G, Christensen J, et al. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metast Rev. 2003;22:309–325.

    Article  CAS  Google Scholar 

  28. Morotti A, Mila S, Accornero P, et al. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene. 2002;21:4885–4893.

    Article  CAS  Google Scholar 

  29. Sattler M, Pride YB, Ma P, et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res. 2003;63:5462–5469.

    CAS  PubMed  Google Scholar 

  30. Christensen JG, Schreck R, Burrows J, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res. 2003;63:7345–7355.

    CAS  PubMed  Google Scholar 

  31. Maritano D, Accornero P, Bonifaci N, et al. Two mutations affecting conserved residues in the Met receptor operate via different mechanisms. Oncogene. 2000;19:1354–1361.

    Article  CAS  Google Scholar 

  32. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498.

    Article  CAS  Google Scholar 

  33. Follenzi A, Ailles LE, Bakovic S, et al. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet. 2000;25:217–222.

    Article  CAS  Google Scholar 

  34. Weidner KM, Arakaki N, Hartmann G, et al. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA. 1991;88:7001–7005.

    Article  CAS  Google Scholar 

  35. Goldman JM, Melo JV . Chronic myeloid leukemia — advances in biology and new approaches to treatment. N Engl J Med. 2003;349:1451–1464.

    Article  CAS  Google Scholar 

  36. Croom KF, Perry CM . Imatinib mesylate: in the treatment of gastrointestinal stromal tumours. Drugs. 2003;63:513–522.

    Article  CAS  Google Scholar 

  37. Bose S, Deininger M, Gora-Tybor J, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92:3362–3367.

    CAS  Google Scholar 

  38. Yang G, Thompson JA, Fang B, et al. Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumor growth in a model of human ovarian cancer. Oncogene. 2003;22:5694–5701.

    Article  CAS  Google Scholar 

  39. Scherr M, Battmer K, Winkler T, et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood. 2003;101:1566–1569.

    Article  CAS  Google Scholar 

  40. Hingorani SR, Jacobetz MA, Robertson GP, et al. Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res. 2003;63:5198–5202.

    CAS  Google Scholar 

  41. Li K, Lin SY, Brunicardi FC, Seu P . Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res. 2003;63:3593–3597.

    CAS  PubMed  Google Scholar 

  42. Filleur S, Courtin A, Ait-Si-Ali S, et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res. 2003;63:2319–2322.

    Google Scholar 

  43. Weinstein IB . Cancer, addiction to oncogenes — the Achilles heal of cancer. Science. 2002;297:63–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Roberto Piva, Andrea Manazza and Chiara Ambrogio for technical help. This work was supported by funds from the Italian Association for Cancer Research (AIRC, CP), the Oncology Project Compagnia di San Paolo/FIRMS (CeRMS) and PRIN 2003 (CP, LN). Paolo Accornero is a FIRC fellow. The continuing support of the Compagnia di San Paolo and Fondazione CRT to C Ponzetto's laboratory is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Ponzetto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taulli, R., Accornero, P., Follenzi, A. et al. RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis. Cancer Gene Ther 12, 456–463 (2005). https://doi.org/10.1038/sj.cgt.7700815

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700815

Keywords

This article is cited by

Search

Quick links