Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Murine mammary adenocarcinoma cells transfected with p53 and/or Flt3L induce antitumor immune responses

Abstract

Transfection of tumors with tumor-associated antigens (Ags) or cytokines can increase immunogenicity and slow down tumor growth. However, the effect of cotransfection with genes that encode a tumor-associated Ag, such as the tumor suppressor gene p53, and a cytokine has been rarely investigated. We report that transfection of 4T1 mammary tumor cells (p53-null) with the dendritic cell (DC) growth factor, fms-like tyrosine kinase 3 ligand (Flt3L), significantly delayed their growth in vivo, resulting in the rejection of 100% of the tumors formed by injection of tumor cells cotransfected with Flt3L and p53. Immunization with irradiated 4T1 cells transfected with Flt3L induced DC infiltration of the immunization site and significantly increased the antitumor T-cell responses. Further, immunization with irradiated 4T1 cells cotransfected with p53 and Flt3L significantly increased p53-specific immune responses, as compared to vaccination with 4T1 cells transfected with either Flt3L or p53 alone. These responses included increased activity against clone 66 (Cl-66), a sister tumor to 4T1 with high murine mutant p53 expression levels. Challenge with Cl-66 revealed that immunization with irradiated 4T1-Flt3L-p53 cells significantly slowed growth, prolonged survival, and resulted in complete remissions. Further, immunization with irradiated 4T1-Flt3L also slowed Cl-66 growth, although to a lesser extent than 4T1-Flt3L-p53. We suggest that immunization with DCs transfected with the Flt3L transgene and a tumor Ag may potentially heighten T-cell responses and therapeutic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Offringa R, Vierboom MP, van der Burg SH, Erdile L, Melief CJ . p53: a potential target antigen for immunotherapy of cancer. Ann NY Acad Sci. 2000;910:223–233.

    Article  CAS  PubMed  Google Scholar 

  2. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science. 1991;253:49–53.

    Article  CAS  PubMed  Google Scholar 

  3. O'Hanlon DM, Kiely M, MacConmara M, et al. An immunohistochemical study of p21 and p53 expression in primary node-positive breast carcinoma. Eur J Surg Oncol. 2002;28:103–107.

    Article  CAS  PubMed  Google Scholar 

  4. Soussi T, Dehouche K, Beroud C . p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum Mutat. 2000;15:105–113.

    Article  CAS  PubMed  Google Scholar 

  5. Chung KY, Mukhopadhyay T, Kim J, et al. Discordant p53 gene mutations in primary head and neck cancers and corresponding second primary cancers of the upper aerodigestive tract. Cancer Res. 1993;53:1676–1683.

    CAS  PubMed  Google Scholar 

  6. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA . Targeting p53 as a general tumor antigen. Proc Natl Acad Sci USA. 1995;92:11993–11997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levine AJ . P53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331.

    Article  CAS  PubMed  Google Scholar 

  8. Gnjatic S, Cai Z, Viguier M, Chouaib S, Guillet JG, Choppin J . Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J Immunol. 1998;160:328–333.

    CAS  PubMed  Google Scholar 

  9. Tilkin AF, Lubin R, Soussi T, et al. Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. Eur J Immunol. 1995;25:1765–1769.

    Article  CAS  PubMed  Google Scholar 

  10. Nikitina EY, Clark JI, van Beynen J, et al. Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Clin Cancer Res. 2001;7:127–135.

    CAS  PubMed  Google Scholar 

  11. Ishida T, Chada S, Stipanov M, et al. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses. Clin Exp Immunol. 1999;117:244–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lutzker SG, Lattime EC . Use of dendritic cells to immunize against cancers overexpressing p53. Clin Cancer Res. 2001;7:2–4.

    CAS  PubMed  Google Scholar 

  13. Svane IM, Pedersen AE, Johnsen HE, et al. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother. 2004;53:633–641.

    Article  CAS  PubMed  Google Scholar 

  14. Lomas M, Liauw W, Packham D, et al. Phase I clinical trial of a human idiotypic p53 vaccine in patients with advanced malignancy. Ann Oncol. 2004;15:324–329.

    Article  CAS  PubMed  Google Scholar 

  15. van der Burg SH, Menon AG, Redeker A, et al. Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clin Cancer Res. 2002;8:1019–1027.

    CAS  PubMed  Google Scholar 

  16. McKenna HJ . Role of hematopoietic growth factors/flt3 ligand in expansion and regulation of dendritic cells. Curr Opin Hematol. 2001;8:149–154.

    Article  CAS  PubMed  Google Scholar 

  17. Antonysamy MA, Thomson AW . Flt3 ligand (FL) and its influence on immune reactivity. Cytokine. 2000;12:87–100.

    Article  CAS  PubMed  Google Scholar 

  18. Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JCL . Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med. 1997;3:625–631.

    Article  CAS  PubMed  Google Scholar 

  19. Parajuli P, Pisarev V, Sublet J, et al. Immunization with wild-type p53 gene sequences coadministered with Flt3 ligand induces an antigen-specific type 1 T-cell response. Cancer Res. 2001;61:8227–8234.

    CAS  PubMed  Google Scholar 

  20. Nouri-Shirazi M, Banchereau J, Fay J, Palucka K . Dendritic cell based tumor vaccines. Immunol Lett. 2000;74:5–10.

    Article  CAS  PubMed  Google Scholar 

  21. Sang H, Pisarev VM, Munger C, et al. Regional, but not systemic recruitment/expansion of dendritic cells by a pluronic-formulated Flt3-ligand plasmid with vaccine adjuvant activity. Vaccine. 2003;21:3019–3029.

    Article  CAS  PubMed  Google Scholar 

  22. Moore AC, Kong WP, Chakrabarti BK, Nabel GJ . Effects of antigen and genetic adjuvants on immune responses to human immunodeficiency virus DNA vaccines in mice. J Virol. 2002;76:243–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baek KM, Ko SY, Lee M, et al. Comparative analysis of effects of cytokine gene adjuvants on DNA vaccination against Mycobacterium tuberculosis heat shock protein 65. Vaccine. 2003;21:3684–3689.

    Article  CAS  PubMed  Google Scholar 

  24. Fong CL, Hui KM . Generation of potent and specific cellular immune responses via in vivo stimulation of dendritic cells by pNGVL3-hFLex plasmid DNA and immunogenic peptides. Gene Therapy. 2002;9:1127–1138.

    Article  CAS  PubMed  Google Scholar 

  25. Mwangi W, Brown WC, Lewin HA, et al. DNA-encoded fetal liver tyrosine kinase 3 ligand and granulocyte macrophage-colony-stimulating factor increase dendritic cell recruitment to the inoculation site and enhance antigen-specific CD4(+) T cell responses induced by DNA vaccination of outbred animals. J Immunol. 2002;169:3837–3846.

    Article  CAS  PubMed  Google Scholar 

  26. Westermann J, Nguyen-Hoai T, Mollweide A, et al. Flt-3 ligand as adjuvant for DNA vaccination augments immune responses but does not skew TH1/TH2 polarization. Gene Therapy. 2004;11:1048–1056.

    Article  CAS  PubMed  Google Scholar 

  27. Kwon TK, Park JW . Intramuscular co-injection of naked DNA encoding HBV core antigen and Flt3 ligand suppresses anti-HBc antibody response. Immunol Lett. 2002;81:229–234.

    Article  CAS  PubMed  Google Scholar 

  28. Esche C, Subbotin VM, Maliszewski C, Lotze MT, Shurin MR . Flt3 ligand administration inhibits tumor growth in murine melanoma and lymphoma. Cancer Res. 1998;58:380–383.

    CAS  PubMed  Google Scholar 

  29. Chen K, Braun S, Lyman S, et al. Antitumor activity and immunotherapeutic properties of Flt3-ligand in a murine breast cancer model. Cancer Res. 1997;57:3511–3516.

    CAS  PubMed  Google Scholar 

  30. Gregory SH, Sagnimeni AJ, Zurowski NB, Thomson AW . Flt3 ligand pretreatment promotes protective immunity to Listeria monocytogenes. Cytokine. 2001;13:202–208.

    Article  CAS  PubMed  Google Scholar 

  31. Pisarev VM, Parajuli P, Mosley RL, et al. Flt3 ligand enhances the immunogenicity of a gag-based HIV-1 vaccine. Int J Immunopharmacol. 2000;22:865–876.

    Article  CAS  PubMed  Google Scholar 

  32. Pisarev VM, Parajuli P, Mosley RL, et al. Flt3 ligand and conjugation to IL-1B peptide as adjuvants for a type 1, T cell response to an HIV gag p17 vaccine. Vaccine. 2002;17–18:2358–2368.

    Article  Google Scholar 

  33. Sang H, Pisarev VM, Munger C, et al. Regional, but not systemic recruitment/expansion of dendritic cells by a pluronic-formulated Flt3-ligand plasmid with vaccine adjuvant activity. Vaccine. 2003;21:3019–3029.

    Article  CAS  PubMed  Google Scholar 

  34. Pulendran B, Smith JL, Jenkins M, Schoenborn M, Maraskovsky E, Maliszewski CR . Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J Exp Med. 1998;188:2075–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Braun SE, Chen K, Blazar BR, et al. Flt3 ligand antitumor activity in a murine breast cancer model: a comparison with granulocyte-macrophage colony-stimulating factor and a potential mechanism of action. Hum Gene Ther. 1999;10:2141–2151.

    Article  CAS  PubMed  Google Scholar 

  36. Dong J, Bohinski RJ, Li YQ, et al. Antitumor effect of secreted Flt3-ligand can act at distant tumor sites in a murine model of head and neck cancer. Cancer Gene Ther. 2003;10:96–104.

    Article  CAS  PubMed  Google Scholar 

  37. Kim EM, Sivanandham M, Stavropoulos CI, Wallack MK . Adjuvant effect of a Flt3 ligand (FL) gene-transduced xenogeneic cell line in a murine colon cancer model. J Surg Res. 2002;108:148–156.

    Article  CAS  PubMed  Google Scholar 

  38. Yang Q, Yang G, Wei L, Jia F, Wu M, Guo Y . Gene transfer of murine Flt3 ligand mediated by adenoviral vector efficiently induces growth inhibition of murine liver cancer. Zhonghua Yi Xue Za Zhi. 2002;82:775–779.

    CAS  PubMed  Google Scholar 

  39. Deng H, Kowalczyk D, InSug O, et al. A modified DNA vaccine to p53 induces protective immunity to challenge with a chemically induced sarcoma cell line. Cell Immunol. 2002;215:20–31.

    Article  CAS  PubMed  Google Scholar 

  40. Hung CF, Hsu KF, Cheng WF, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 2001;61:1080–1088.

    CAS  PubMed  Google Scholar 

  41. Sailaja G, Husain S, Nayak BP, Jabbar AM . Long-term maintenance of gp120-specific immune responses by genetic vaccination with the HIV-1 envelope genes linked to the gene encoding Flt-3 ligand. J Immunol. 2003;170:2496–2507.

    Article  CAS  PubMed  Google Scholar 

  42. Disis ML, Rinn K, Knutson KL, et al. Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood. 2002;99:2845–2850.

    Article  CAS  PubMed  Google Scholar 

  43. Evans TG, Hasan M, Galibert L, Caron D . The use of Flt3 ligand as an adjuvant for hepatitis B vaccination of healthy adults. Vaccine. 2002;21:322–329.

    Article  CAS  PubMed  Google Scholar 

  44. McNeel DG, Knutson KL, Schiffman K, Davis DR, Caron D, Disis ML . Pilot study of an HLA-A2 peptide vaccine using flt3 ligand as a systemic vaccine adjuvant. J Clin Immunol. 2003;23:62–72.

    Article  CAS  PubMed  Google Scholar 

  45. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B . Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–915.

    Article  CAS  PubMed  Google Scholar 

  46. Aslakson CJ, Miller FR . Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–1405.

    CAS  PubMed  Google Scholar 

  47. Wang H, Mohammad RM, Werdell J, Shekhar PV . p53 and protein kinase C independent induction of growth arrest and apoptosis by bryostatin 1 in a highly metastatic mammary epithelial cell line: in vitro versus in vivo activity. Int J Mol Med. 1998;1:915–923.

    CAS  PubMed  Google Scholar 

  48. Sang H, Pisarev VM, Munger C, et al. Regional, but not systemic recruitment/expansion of dendritic cells by a pluronic-formulated Flt3-ligand plasmid with vaccine adjuvant activity. Vaccine. 2003;21:3019–3029.

    Article  CAS  PubMed  Google Scholar 

  49. Shinohara T, Miki T, Nishimura N, et al. Nuclear factor-kappaB-dependent expression of metastasis suppressor KAI1/CD82 gene in lung cancer cell lines expressing mutant p53. Cancer Res. 2001;61:673–678.

    CAS  PubMed  Google Scholar 

  50. Miller FR, Miller BE, Heppner GH . Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invas Metastasis. 1983;3:22–31.

    CAS  Google Scholar 

  51. Shekhar PV, Werdell J, Christman JK, Miller FR . Heterogeneity in p53 mutations in mouse mammary tumor subpopulations with different metastatic potential from the orthotopic site. Anticancer Res. 1995;15:815–820.

    CAS  PubMed  Google Scholar 

  52. Shekhar PV, Lane MA, Werdell J, Christman JK, Miller FR . Association of alterations in structure and expression of c-Ha-ras, p53, and nm23 with metastatic potential in an orthotopic mammary cancer model. Cell Mol Biol. 1995;2:529–540.

    CAS  Google Scholar 

  53. Parker KC, Bednarek MA, Coligan JE . Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994;152:163–175.

    CAS  PubMed  Google Scholar 

  54. Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G . Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3- ligand. Cancer Res. 2000;60:3239–3246.

    CAS  PubMed  Google Scholar 

  55. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993;90:3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee CT, Wu S, Ciernik IF, et al. Genetic immunotherapy of established tumors with adenovirus-murine granulocyte-macrophage colony-stimulating factor. Hum Gene Ther. 1997;8:187–193.

    Article  CAS  PubMed  Google Scholar 

  57. Kass E, Panicali DL, Mazzara G, Schlom J, Greiner JW . Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant. Cancer Res. 2001;61:206–214.

    CAS  PubMed  Google Scholar 

  58. Shaw SG, Maung AA, Steptoe RJ, Thomson AW, Vujanovic NL . Expansion of functional NK cells in multiple tissue compartments of mice treated with Flt3-ligand: implications for anti-cancer and anti-viral therapy. J Immunol. 1998;161:2817–2824.

    CAS  PubMed  Google Scholar 

  59. He Y, Pimenov AA, Nayak JV, Plowey J, Falo Jr LD, Huang L . Intravenous injection of naked DNA encoding secreted flt3 ligand dramatically increases the number of dendritic cells and natural killer cells in vivo. Hum Gene Ther. 2000;11:547–554.

    Article  CAS  PubMed  Google Scholar 

  60. Chklovskaia E, Nowbakht P, Nissen C, Gratwohl A, Bargetzi M, Wodnar-Filipowicz A . Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation: effects of endogenous flt3 ligand. Blood. 2004;103:3860–3868.

    Article  CAS  PubMed  Google Scholar 

  61. Check E . Second cancer case halts gene-therapy trials. Nature. 2003;421:305.

    Article  CAS  PubMed  Google Scholar 

  62. Mosley RL, Parajuli P, Pisarev V, et al. Flt3 ligand augmentation of T cell mitogenesis and expansion of type 1 effector/memory T cells. Int Immunopharmacol. 2002;2:925–940.

    Article  PubMed  Google Scholar 

  63. Vierboom MP, Nijman HW, Offringa R, et al. Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J Exp Med. 1997;186:695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wei YQ, Huang MJ, Yang L, et al. Immunogene therapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen. Proc Natl Acad Sci USA. 2001;98:11545–11550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wei YQ . Immunotherapy of tumors with vaccines based on xenogeneic homologous molecules. Anticancer Drugs. 2002;13:229–235.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michelle Varney, Aihua Li, and Matthew Backora for their assistance with the experiments and Richard Murcek, Lisa Chudomelka, Tina Winekauf, and Kirsten Stites for assisting with the preparation of the manuscript. This research was supported by the Nebraska Research Initiative Programs in Gene Therapy (JET) and in Molecular Therapeutics (JET, RKS, and JCS), by an LB595/Cattlemen's Ball Grant (JCS), and by an International Exchange Award from the National Science Foundation and by the Department of Health, People's Republic of China (HS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E Talmadge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang, H., Pisarev, V., Chavez, J. et al. Murine mammary adenocarcinoma cells transfected with p53 and/or Flt3L induce antitumor immune responses. Cancer Gene Ther 12, 427–437 (2005). https://doi.org/10.1038/sj.cgt.7700809

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700809

Keywords

This article is cited by

Search

Quick links