Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus-mediated p53 gene therapy in pediatric soft-tissue sarcoma cell lines: sensitization to cisplatin and doxorubicin

Abstract

Sarcomas, or tumors of connective tissue, represent roughly 20% of childhood cancers. Although the cure rate for sarcomas in general has significantly improved in the last 10 years, there continue to be subgroups that are difficult to treat. High-grade or metastatic soft-tissue sarcomas and rhabdomyosarcomas (RMS) of the extremities remain therapeutic challenges and their prognosis is often poor. The future of sarcoma therapy will likely include molecular approaches including gene/protein expression profiling and gene-based therapy. Most sarcomas harbor defects in the p53 or pRb pathways. The tumor suppressor p53 is central to regulation of cell growth and tumor suppression and restoring wild-type p53 function in pediatric sarcomas may be of therapeutic benefit. Studies with adenoviral-mediated p53 gene transfer have been conducted in many cancer types including cervical, ovarian, prostatic and head and neck tumors. Studies of this approach, however, remain limited in pediatric cancers, including sarcomas. Using three viral constructs containing cDNA for wild-type p53, mutant p53 (C135S) and lacZ, we studied the effect of adenoviral-mediated gene therapy in four pediatric sarcoma cell lines, RD and Rh4 (RMS), Rh1 (Ewing's sarcoma) and A204 (undifferentiated sarcoma). Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, we have shown a dose-dependent decrease in cell viability 72 h post-treatment that occurs with Ad-wtp53 but not with Ad-mutp53. Cells treated with Ad-wtp53 show upregulation of the p53 downstream targets, p21CIP1/WAF1 and bax. Growth curves demonstrate suppression of cell growth over a period of 4 days and cells treated with Ad-wtp53 demonstrate a significant increase in sensitivity to the chemotherapeutic agents, cisplatin and doxorubicin. Our results indicate that restoration of wild-type p53 function in pediatric sarcoma cells could provide a basis for novel approaches to treatment of this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mackall CL, Meltzer PS, Helman LJ . Focus on sarcomas. Cancer Cell. 2002;2:175–178.

    CAS  PubMed  Google Scholar 

  2. Gonzalez-Crussi F, Black-Schaffer S . Rhabdomyosarcoma of infancy and childhood. Problems of morphologic classification. Am J Surg Pathol. 1979;3:157–171.

    Google Scholar 

  3. Grier H, Krailo M, Link M, et al. Improved outcome in nonmetastatic Ewing's sarcoma and PNET of bone with the addition of ifosfamide and etoposide to vincristine, Doxorubicin, cyclophosphamide, and actinomycin: a Children's Cancer Group and Pediatric Oncology Group report. Proc Am Soc Clin Oncol. 1994;13:421.

    Google Scholar 

  4. Pawel BR, Hamoudi AB, Asmar L, et al. Undifferentiated sarcomas of children: pathology and clinical behavior — an Intergroup Rhabdomyosarcoma study. Med Pediatr Oncol. 1997;29:170–180.

    CAS  PubMed  Google Scholar 

  5. McDowell HP . Update on childhood rhabdomyosarcoma. Arch Dis Child. 2003;88:354–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wexler LH, Helman LJ . Soft tissue sarcomas of childhood. In: Holland JF, Kufe DW, Pollock RE, et al, eds. Holland-Frei Cancer Medicine. 5th edn. Hamilton, ON: BC Decker Inc. Publisher; 2000.

    Google Scholar 

  7. NCI. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995. Bethesda, MD: National Cancer Institute.

  8. Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS . Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;3:113–117.

    CAS  PubMed  Google Scholar 

  9. Galili N, Davis RJ, Fredericks WJ, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;5:230–235.

    CAS  PubMed  Google Scholar 

  10. Davis RJ, D'Cruz CM, Lovell MA, Biegel JA, Barr FG . Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994;54:2869–2872.

    CAS  PubMed  Google Scholar 

  11. Sorensen PH, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol. 2002;20:2672–2679.

    CAS  PubMed  Google Scholar 

  12. Barr FG . Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001;20:5736–5746.

    CAS  PubMed  Google Scholar 

  13. Diller L, Sexsmith E, Gottlieb A, Li FP, Malkin D . Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest. 1995;95:1606–1611.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, Barbacid M . Oncogenes in solid human tumours. Nature. 1982;300:539–542.

    CAS  PubMed  Google Scholar 

  15. Chardin P, Yeramian P, Madaule P, Tavitian A . N-ras gene activation in the RD human rhabdomyosarcoma cell line. Int J Cancer. 1985;35:647–652.

    CAS  PubMed  Google Scholar 

  16. Ferracini R, Olivero M, Di Renzo MF, et al. Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene. 1996;12:1697–1705.

    CAS  PubMed  Google Scholar 

  17. Dagher R, Helman L . Rhabdomyosarcoma: an overview. Oncologist. 1999;4:34–44.

    CAS  PubMed  Google Scholar 

  18. Koscielniak E, Rodary C, Flamant F, et al. Metastatic rhabdomyosarcoma and histologically similar tumors in childhood: a retrospective European multi-center analysis. Med Pediatr Oncol. 1992;20:209–214.

    CAS  PubMed  Google Scholar 

  19. Raney Jr RB, Tefft M, Maurer HM, et al. Disease patterns and survival rate in children with metastatic soft-tissue sarcoma. A report from the Intergroup Rhabdomyosarcoma Study (IRS)-I. Cancer. 1988;62:1257–1266.

    PubMed  Google Scholar 

  20. Delattre O, Zucman J, Melot T, et al. The Ewing family of tumors — a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331:294–299.

    CAS  PubMed  Google Scholar 

  21. Scotlandi K, Serra M, Manara MC, et al. Immunostaining of the p30/32MIC2 antigen and molecular detection of EWS rearrangements for the diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumor. Hum Pathol. 1996;27:408–416.

    CAS  PubMed  Google Scholar 

  22. West DC . Ewing sarcoma family of tumors. Curr Opin Oncol. 2000;12:323–329.

    CAS  PubMed  Google Scholar 

  23. Weber KL, Sim FH . Ewing's sarcoma: presentation and management. J Orthop Sci. 2001;6:366–371.

    CAS  PubMed  Google Scholar 

  24. Denny CT . Gene rearrangements in Ewing's sarcoma. Cancer Invest. 1996;14:83–88.

    CAS  PubMed  Google Scholar 

  25. Massey GV, Dunn NL, Heckel JL, Davis EC, Jackson-Cook C, Russell EC . Unusual presentation of Ewing sarcoma with t(21;22) in a 3-year-old boy. J Pediatr Hematol Oncol. 1996;18:198–201.

    CAS  PubMed  Google Scholar 

  26. Bertolotti A, Lutz Y, Heard DJ, Chambon P, Tora L . hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 1996;15:5022–5031.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bertolotti A, Melot T, Acker J, Vigneron M, Delattre O, Tora L . EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol Cell Biol. 1998;18:1489–1497.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. May WA, Lessnick SL, Braun BS, et al. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993;13:7393–7398.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Abudu A, Mangham DC, Reynolds GM, et al. Overexpression of p53 protein in primary Ewing's sarcoma of bone: relationship to tumour stage, response and prognosis. Br J Cancer. 1999;79:1185–1189.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. de Alava E, Antonescu CR, Panizo A, et al. Prognostic impact of P53 status in Ewing sarcoma. Cancer. 2000;89:783–792.

    CAS  PubMed  Google Scholar 

  31. Lopez-Guerrero JA, Pellin A, Noguera R, Carda C, Llombart-Bosch A . Molecular analysis of the 9p21 locus and p53 genes in Ewing family tumors. JA Lab Invest. 2001;81:803–814.

    CAS  Google Scholar 

  32. Wilkins RM, Pritchard DJ, Burgert Jr EO, Unni KK . Ewing's sarcoma of bone. Experience with 140 patients. Cancer. 1986;58:2551–2555.

    CAS  PubMed  Google Scholar 

  33. Cotterill SJ, Ahrens S, Paulussen M, et al. Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group. J Clin Oncol. 2000;18:3108–3114.

    CAS  PubMed  Google Scholar 

  34. Burgert Jr EO, Nesbit ME, Garnsey LA, et al. Multimodal therapy for the management of nonpelvic, localized Ewing's sarcoma of bone: intergroup study IESS-II. J Clin Oncol. 1990;8:1514–1524.

    PubMed  Google Scholar 

  35. Arndt CA, Crist WM . Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 1999;341:342–352.

    CAS  PubMed  Google Scholar 

  36. Chung EB . Current classification of soft tissue tumors. In: Fletcher CDM, McKee PH eds. Pathobiology of Soft Tissue Tumors. New York, NY: Churchill; 1991.

    Google Scholar 

  37. Hamada K, Alemany R, Zhang WW, et al. Adenovirus-mediated transfer of a wild-type p53 gene and induction of apoptosis in cervical cancer. Cancer Res. 1996;56:3047–3054.

    CAS  PubMed  Google Scholar 

  38. Kigawa J, Sato S, Shimada M, et al. p53 gene status and chemosensitivity in ovarian cancer. Hum Cell. 2001;14:165–171.

    CAS  PubMed  Google Scholar 

  39. Sweeney P, Pisters LL . Ad5CMVp53 gene therapy for locally advanced prostate cancer — where do we stand? World J Urol. 2000;18:121–124.

    CAS  PubMed  Google Scholar 

  40. Swisher SG, Roth JA . Clinical update of Ad-p53 gene therapy for lung cancer. Surg Oncol Clin N Am. 2002;11:521–535.

    PubMed  Google Scholar 

  41. Shimada H, Matsubara H, Ochiai T . p53 gene therapy for esophageal cancer. J Gastroenterol. 2002;37:87–91.

    CAS  PubMed  Google Scholar 

  42. Liu FF . Novel gene therapy approach for nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:505–515.

    CAS  PubMed  Google Scholar 

  43. Frank DK . Gene therapy for head and neck cancer. Surg Oncol Clin N Am. 2002;11:589–606.

    PubMed  Google Scholar 

  44. Delatte SJ, Hazen-Martin DJ, Re GG, Kelly JR, Sutphin A, Tagge EP . Restoration of p53 function in anaplastic Wilms' tumor. J Pediatr Surg. 2001;36:43–50.

    CAS  PubMed  Google Scholar 

  45. Shetty S, Taylor AC, Harris LC . Selective chemosensitization of rhabdomyosarcoma cell lines following wild-type p53 adenoviral transduction. Anticancer Drugs. 2002;13:881–889.

    CAS  PubMed  Google Scholar 

  46. Kawashima H, Ogose A, Yoshizawa T, et al. Expression of the coxsackievirus and adenovirus receptor in musculoskeletal tumors and mesenchymal tissues: efficacy of adenoviral gene therapy for osteosarcoma. Cancer Sci. 2003;94:70–75.

    CAS  PubMed  Google Scholar 

  47. Marcellus RC, Teodoro JG, Charbonneau R, Shore GC, Branton PE . Expression of p53 in Saos-2 osteosarcoma cells induces apoptosis which can be inhibited by Bcl-2 or the adenovirus E1B-55 kDa protein. Cell Growth Differ. 1996;7:1643–1650.

    CAS  PubMed  Google Scholar 

  48. Laffon B, Pasaro E, Mendez J . Effects of styrene-7,8-oxide over p53, p21, bcl-2 and bax expression in human lymphocyte cultures. Mutagenesis. 2001;16:127–132.

    CAS  PubMed  Google Scholar 

  49. Hodges NJ, Chipman JK . Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells. Carcinogenesis. 2002;23:55–60.

    CAS  PubMed  Google Scholar 

  50. Webb JL . Effect of more than one inhibitor. In: Webb JL, ed. Enzymes and Metabolic Inhibitors. Vol. 1. New York, NY: Academic Press; 1963: 66–79, 487–512.

    Google Scholar 

  51. Yeh YA, Herenyiova M, Weber G . Quercetin: synergistic action with carboxyamidotriazole in human breast carcinoma cells. Life Sci. 1995;57:1285–1292.

    CAS  PubMed  Google Scholar 

  52. Zhang L, Hung MC . Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene. 1996;12:571–576.

    CAS  PubMed  Google Scholar 

  53. Chang EH, Pirollo KF, Bouker KB . Tp53 gene therapy: a key to modulating resistance to anticancer therapies? Mol Med Today. 2000;6:358–364.

    CAS  PubMed  Google Scholar 

  54. Ganjavi H, Gee M, Narendran A, et al. Adenovirus-mediated p53 gene therapy in osteosarcoma cell lines: Sensitisation to cisplatin and doxorubicin. Hum Gene Ther. (under review). 2004.

  55. Levine AJ . p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331.

    CAS  PubMed  Google Scholar 

  56. Greenblatt MS, Bennett WP, Hollstein M, Harris CC . Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54:4855–4878.

    CAS  PubMed  Google Scholar 

  57. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science. 1991;253:49–53.

    CAS  PubMed  Google Scholar 

  58. Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989;342:705–708.

    CAS  PubMed  Google Scholar 

  59. Smith ND, Rubenstein JN, Eggener SE, Kozlowski JM . The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol. 2003;169:1219–1228.

    CAS  PubMed  Google Scholar 

  60. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–221.

    CAS  PubMed  Google Scholar 

  61. Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4:1–7.

    CAS  PubMed  Google Scholar 

  62. Purdie CA, Harrison DJ, Peter A, et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene. 1994;9:603–609.

    CAS  PubMed  Google Scholar 

  63. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–1238.

    CAS  PubMed  Google Scholar 

  64. Varley JM . Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat. 2003;21:313–320.

    CAS  PubMed  Google Scholar 

  65. Srivastava S, Zou ZQ, Pirollo K, et al. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348:747–749.

    CAS  PubMed  Google Scholar 

  66. Tsuchiya T, Sekine K, Hinohara S, et al. Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet. 2000;120:91–98.

    CAS  PubMed  Google Scholar 

  67. Nielsen LL, Dell J, Maxwell E, et al. Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther. 1997;4:129–138.

    CAS  PubMed  Google Scholar 

  68. Bookstein R, Demer W, Gregory R, et al. p53 gene therapy in vivo of hepatocellular and liver metastatic colorectal cancer. Semin Oncol. 1996;23:66–77.

    CAS  PubMed  Google Scholar 

  69. Kock H, Harris MP, Anderson SC, et al. Adenovirus-mediated p53 gene transfer suppresses growth of human glioblastoma cells in vitro and in vivo. Int J Cancer. 1996;67:808–815.

    CAS  PubMed  Google Scholar 

  70. Mujoo K, Maneval DC, Anderson SC, et al. Adenoviral-mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene. 1996;12:1617–1623.

    CAS  PubMed  Google Scholar 

  71. Tursz T, Le Cesne A, Baldeyrou P, et al. Phase I study of a recombinant adenovirus-mediated gene transfer in lung cancer patients. J Natl Cancer Inst. 1996;88:1857–1863.

    CAS  PubMed  Google Scholar 

  72. Clayman GL, el-Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998;16:2221–2232.

    CAS  PubMed  Google Scholar 

  73. Clayman GL, Frank DK, Bruso PA, et al. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin Cancer Res. 1999;5:1715–1722.

    CAS  PubMed  Google Scholar 

  74. Reid T, Warren R, Kirn D . Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther. 2002;9:979–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Neyns B, Noppen M . Intratumoral gene therapy for non-small cell lung cancer: current status and future directions. Monaldi Arch Chest Dis. 2003;59:287–295.

    CAS  PubMed  Google Scholar 

  76. Asaoka K, Tada M, Sawamura Y, Ikeda J, Abe H . Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor. J Neurosurg. 2000;92:1002–1008.

    CAS  PubMed  Google Scholar 

  77. Hutchin ME, Pickles RJ, Yarbrough WG . Efficiency of adenovirus-mediated gene transfer to oropharyngeal epithelial cells correlates with cellular differentiation and human coxsackie and adenovirus receptor expression. Hum Gene Ther. 2000;11:2365–2375.

    CAS  PubMed  Google Scholar 

  78. Turturro F, Seth P, Link Jr CJ . In vitro adenoviral vector p53-mediated transduction and killing correlates with expression of coxsackie-adenovirus receptor and alpha(nu)beta5 integrin in SUDHL-1 cells derived from anaplastic large-cell lymphoma. Clin Cancer Res. 2000;6:185–192.

    CAS  PubMed  Google Scholar 

  79. Li D, Duan L, Freimuth P, O'Malley Jr BW . Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res. 1999;5:4175–4181.

    CAS  PubMed  Google Scholar 

  80. Pearson AS, Koch PE, Atkinson N, et al. Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic cancer cell lines. Clin Cancer Res. 1999;5:4208–4213.

    CAS  PubMed  Google Scholar 

  81. Croyle MA, Walter E, Janich S, Roessler BJ, Amidon GL . Role of integrin expression in adenovirus-mediated gene delivery to the intestinal epithelium. Hum Gene Ther. 1998;9:561–573.

    CAS  PubMed  Google Scholar 

  82. Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R . The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther. 1998;9:2363–2373.

    CAS  PubMed  Google Scholar 

  83. Takayama K, Ueno H, Pei XH, Nakanishi Y, Yatsunami J, Hara N . The levels of integrin alpha v beta 5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells. Gene Ther. 1998;5:361–368.

    CAS  PubMed  Google Scholar 

  84. Hamilton TE, McClane SJ, Baldwin S, et al. Efficient adenoviral-mediated murine neonatal small intestinal gene transfer is dependent on alpha(v) integrin expression. J Pediatr Surg. 1997;32:1695–1703.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HG is supported by funds from the Canadian Institutes of Health Research. MG was funded by a Restracomp Studentship (Research Institute, The Hospital for Sick Children). AN is supported by a Research Scientist award from the Kids Cancer Care Foundation of Alberta. DM is a Research Scientist of the National Cancer Instititute of Canada/Canadian Cancer Society. This work was supported in part by a Seed Grant of the Research Institute, The Hospital for Sick Children, the Andrew Mizzoni Cancer Research Fund, and the Harry and Hannah Fisher Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Malkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganjavi, H., Gee, M., Narendran, A. et al. Adenovirus-mediated p53 gene therapy in pediatric soft-tissue sarcoma cell lines: sensitization to cisplatin and doxorubicin. Cancer Gene Ther 12, 397–406 (2005). https://doi.org/10.1038/sj.cgt.7700798

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700798

Keywords

This article is cited by

Search

Quick links