Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model

Abstract

Some anaerobic and facultative anaerobic bacteria have been used experimentally as anticancer agents because of their selective growth in the hypoxia regions of solid tumors after systemic administration. We have previously shown the feasibility of using attenuated Salmonella choleraesuis as a gene delivery vector. In this study, we exploited S. choleraesuis carrying thrombospondin-1 (TSP-1) gene for treating primary melanoma and experimental pulmonary metastasis in the syngeneic murine B16F10 melanoma model. Systemic administration of S. choleraesuis allowed targeted gene delivery to tumors. The bacteria accumulated preferentially in tumors over livers and spleens at ratios ranging from 1000:1 to 10,000:1. The level of transgene expression via S. choleraesuis-mediated gene transfer in tumors could reach more than 1800-fold higher than in livers and spleens. Notably, bacterial accumulation was also observed in the lungs with metastatic nodules, but not in healthy lungs. When administered into mice bearing subcutaneous or pulmonary metastatic melanomas, S. choleraesuis carrying TSP-1 gene significantly inhibited tumor growth and enhanced survival of the mice. Immunohistochemical studies in the tumors from these mice displayed decreased intratumoral microvessel density. Taken together, these findings suggest that TSP-1 gene therapy delivered by S. choleraesuis may be effective for the treatment of primary as well as metastatic melanomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pawelek JM, Low KB, Bermudes D . Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997;57:4537–4544.

    CAS  PubMed  Google Scholar 

  2. Sznol M, Lin SL, Bermudes D, et al. Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest. 2000;105:1027–1030.

    Article  CAS  Google Scholar 

  3. Pawelek JM, Low KB, Bermudes D . Bacteria as tumour-targeting vectors. Lancet Oncol. 2003;4:548–556.

    Article  Google Scholar 

  4. Lemmon MJ, van Zijl P, Fox ME, et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Therapy. 1997;4:791–796.

    Article  CAS  Google Scholar 

  5. Theys J, Landuyt W, Nuyts S, et al. Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 2001;8:294–297.

    Article  CAS  Google Scholar 

  6. Dang LH, Bettegowda C, Huso DL, et al. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA. 2001;98:15155–15160.

    Article  CAS  Google Scholar 

  7. Yazawa K, Fujimori M, Amano J, et al. Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther. 2000;7:269–274.

    Article  CAS  Google Scholar 

  8. Li X, Fu GF, Fan YR, et al. Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 2003;10:105–111.

    Article  CAS  Google Scholar 

  9. Low KB, Ittensohn M, Le T, et al. Lipid A mutant Salmonella with suppressed virulence and TNF-α induction retain tumor-targeting in vivo. Nat Biotechnol. 1999;17:37–41.

    Article  CAS  Google Scholar 

  10. King I, Bermudes D, Lin S, et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum Gene Ther. 2002;13:1225–1233.

    Article  CAS  Google Scholar 

  11. Nuyts S, Van Mellaert L, Theys J, et al. Radio-responsive recA promoter significantly increases TNF-α production in recombinant clostridia after 2 Gy irradiation. Gene Therapy. 2001;8:1197–1201.

    Article  CAS  Google Scholar 

  12. Hartmann A, Kunz M, Kostlin S, et al. Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res. 1999;59:1578–1583.

    CAS  Google Scholar 

  13. Neitzel LT, Neitzel CD, Magee KL, Malafa MP . Angiogenesis correlates with metastasis in melanoma. Ann Surg Oncol. 1999;6:70–74.

    Article  CAS  Google Scholar 

  14. Streit M, Detmar M . Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene. 2003;22:3172–3179.

    Article  CAS  Google Scholar 

  15. Miao WM, Seng WL, Duquette M, Lawler P, Laus C, Lawler J . Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-β-dependent and -independent mechanisms. Cancer Res. 2001;61:7830–7839.

    CAS  PubMed  Google Scholar 

  16. Volpert OV, Lawler J, Bouck NP . A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc Natl Acad Sci USA. 1998;95:6343–6348.

    Article  CAS  Google Scholar 

  17. Shiau AL, Chen YL, Liao CY, Huang YS, Wu CL . Prothymosin α enhances protective immune responses induced by oral DNA vaccination against pseudorabies delivered by Salmonella choleraesuis. Vaccine. 2001;19:3947–3956.

    Article  CAS  Google Scholar 

  18. Lee CH, Wu CL, Shiau AL . Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J Gene Med. in press.

  19. Ades EW, Candal FJ, Swerlick RA, et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 1992;99:683–690.

    Article  CAS  Google Scholar 

  20. Weidner N, Semple JP, Welch WR, Folkman J . Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    Article  CAS  Google Scholar 

  21. Weiss S, Chakraborty T . Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers. Curr Opin Biotechnol. 2001;12:467–472.

    Article  CAS  Google Scholar 

  22. Critchley RJ, Jezzard S, Radford KJ, et al. Potential therapeutic applications of recombinant, invasive E. coli. Gene Therapy. 2004;11:1224–1233.

    Article  CAS  Google Scholar 

  23. Grillot-Courvalin C, Goussard S, Courvalin P . Wild-type intracellular bacteria deliver DNA into mammalian cells. Cell Microbiol. 2002;4:177–186.

    Article  CAS  Google Scholar 

  24. Bannerman DD, Tupper JC, Ricketts WA, Bennett CF, Winn RK, Harlan JM . A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis. J Biol Chem. 2001;276:14924–14932.

    Article  CAS  Google Scholar 

  25. Dkhissi F, Lu H, Soria C, et al. Endostatin exhibits a direct antitumor effect in addition to its antiangiogenic activity in colon cancer cells. Hum Gene Ther. 2003;14:997–1008.

    Article  CAS  Google Scholar 

  26. Kisker O, Becker CM, Prox D, et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 2001;61:7669–7674.

    CAS  Google Scholar 

  27. Beecken WD, Fernandez A, Joussen AM, et al. Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice. J Natl Cancer Inst. 2001;93:382–387.

    Article  CAS  Google Scholar 

  28. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D . Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284:808–812.

    Article  CAS  Google Scholar 

  29. Herlyn M, Clark WH, Rodeck U, Mancianti ML, Jambrosic J, Koprowski H . Biology of tumor progression in human melanocytes. Lab Invest. 1987;56:461–474.

    CAS  Google Scholar 

  30. Straume O, Salvesen HB, Akslen LA . Angiogenesis is prognostically important in vertical growth phase melanomas. Int J Oncol. 1999;15:595–599.

    CAS  PubMed  Google Scholar 

  31. Rodeck U, Becker D, Herlyn M . Basic fibroblast growth factor in human melanoma. Cancer Cells. 1991;3:308–311.

    CAS  PubMed  Google Scholar 

  32. Potgens AJ, Lubsen NH, van Altena MC, Schoenmakers JG, Ruiter DJ, de Waal RM . Vascular permeability factor expression influences tumor angiogenesis in human melanoma lines xenografted to nude mice. Am J Pathol. 1995;146:197–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Theys J, Landuyt W, Nuyts S, et al. Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol Med Microbiol. 2001;30:37–41.

    Article  CAS  Google Scholar 

  34. Bleuel K, Popp S, Fusenig NE, Stanbridge EJ, Boukamp P . Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization. Proc Natl Acad Sci USA. 1999;96:2065–2070.

    Article  CAS  Google Scholar 

  35. Streit M, Velasco P, Brown LF, et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol. 1999;155:441–452.

    Article  CAS  Google Scholar 

  36. Lawler J . The functions of thrombospondin-1 and 2. Curr Opin Cell Biol. 2000;12:634–640.

    Article  CAS  Google Scholar 

  37. Bein K, Simons M . Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem. 2000;275:32167–32173.

    Article  CAS  Google Scholar 

  38. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML . Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA. 2001;98:12485–12490.

    Article  CAS  Google Scholar 

  39. Taraboletti G, Morbidelli L, Donnini S, et al. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J. 2000;14:1674–1676.

    Article  CAS  Google Scholar 

  40. Lawler J, Miao WM, Duquette M, Bouck N, Bronson RT, Hynes RO . Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am J Pathol. 2001;159:1949–1956.

    Article  CAS  Google Scholar 

  41. Guo Y, Kyprianou N . Restoration of transforming growth factor-β signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res. 1999;59:1366–1371.

    CAS  PubMed  Google Scholar 

  42. Twardzik DR, Ranchalis JE, McPherson JM, et al. Inhibition and promotion of differentiated-like phenotype of a human lung carcinoma in athymic mice by natural and recombinant forms of transforming growth factor-β. J Natl Cancer Inst. 1989;81:1182–1185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants (NSC 91-3112-B-006-013 and NSC 92-3112-B-006-007) from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Li Shiau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CH., Wu, CL. & Shiau, AL. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther 12, 175–184 (2005). https://doi.org/10.1038/sj.cgt.7700777

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700777

Keywords

This article is cited by

Search

Quick links