Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Silencing of hdm2 oncogene by siRNA inhibits p53-dependent human breast cancer

Abstract

RNA interference technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. Here our results showed that hdm2-siRNA silenced its target mRNA specifically and effectively in human breast cancer cells, reduced tumor cell proliferation and induced apoptotic cell death. Other molecular features modified by hdm2-siRNA included decreased Bcl-2, NF-κB, survivin, Ras and Raf levels, elevated p53, p21, BRCA1, Bax, and caspase levels as well as altered expression of other genes. hdm2-siRNA also caused cell cycle arrest at G1 phases with reduction in cyclin and Cdk proteins. In addition, hdm2-siRNA displayed in vivo antitumor activity and increased therapeutic effectiveness of mitomycin in MCF-7 xenografts. Thus, hdm2-siRNA may be a promising gene-specific drug for the treatment of human breast cancer and other tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yin J, Wang Y . siRNA-mediated gene regulation system: now and the future. Int J Mol Med. 2002;10:355–365.

    CAS  PubMed  Google Scholar 

  2. Zamore PD . RNA interference: listening to the sound of silence. Nature Struct Biol. 2001;8:746–750.

    Article  CAS  PubMed  Google Scholar 

  3. Elbashir SM, Lendeckel W, Tuschl T . RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15:188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498.

    Article  CAS  PubMed  Google Scholar 

  5. McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature. 2002;418:38–39.

    Article  CAS  PubMed  Google Scholar 

  6. Yin JQ, Gao J, Shao R, et al. siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol. 2003;3:194–204.

    Article  CAS  PubMed  Google Scholar 

  7. Xia HB, Mao QW, Paulson HL, et al. siRNA-mediated gene silencing in vitro and in vivo. Nature. 2002;20:1006–1010.

    CAS  Google Scholar 

  8. Paddison PJ, Caudy AA, Hannon GJ . Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA. 2002;99:1443–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laetitia KL, Arnd H, Aaron C, et al. HdmX stimulates hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA. 2003;100:12009–12014.

    Article  Google Scholar 

  10. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature. 2000;408:307–310.

    Article  CAS  PubMed  Google Scholar 

  11. Vanessa B, Rosemary EK, Laetitia KL, et al. A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat Cell Biol. 2003;5:754–761.

    Article  Google Scholar 

  12. Momand J, Zambetti GP, Olson DC, et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–1245.

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Li N, Dong Y, et al. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer, in vitro and in vivo activities and mechanisms. Clin Cancer Res. 2001;7:3613–3624.

    CAS  PubMed  Google Scholar 

  14. Zhang Z, Li M, Wang H, et al. Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc Natl Acad Sci USA. 2003;100:11636–11641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mehta K . High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. Int J Cancer. 1994;58:400–406.

    Article  CAS  PubMed  Google Scholar 

  16. Lin SL, Chuong CM, Ying SY . A novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCap cells. Biochem Biophys Res Commun. 2001;281:639–644.

    Article  CAS  PubMed  Google Scholar 

  17. Li ZJ, Xiong F, Lin QS, et al. Low-temperature increases the yield of biologically active herring antifreeze protein in pichia pastoris. Protein Expr Purif. 2001;21:438–445.

    Article  PubMed  Google Scholar 

  18. Zhong MH, Lu ZM, Foster DA . Down regulating PKC δ provides a PI3K/Akt-independent survival signal that overcomes apoptotic signals generated by c-Src overexpression. Oncogene. 2002;21:1071–1078.

    Article  CAS  PubMed  Google Scholar 

  19. Jason L, Gao DQ, Mariana K, et al. Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res. 2001;61:3212–3219.

    Google Scholar 

  20. Tan Y F, Li FX, Piao Y S, et al. Global gene profiling analysis of mouse uterus duringthe oestrous cycle. Reproduction. 2003;126:171–182.

    Article  PubMed  Google Scholar 

  21. Kralj M, Husnjak K, Korbler T, et al. Endogenous p21 (WAF1/CIP1) status predicts the response of human tumor cells to wild-type p53 and p21 (WAF1/CIP1) overexpression. Cancer Gene Ther. 2003;10:457–467.

    Article  CAS  PubMed  Google Scholar 

  22. Lin SL, Chuong CM, Ying SY . A novel mRNA–cDNA interference phenomenon for silencing bcl-2 expression in human LNCap cells. Biochem Biophys Res Commun. 2001;281:639–644.

    Article  CAS  PubMed  Google Scholar 

  23. Ruth M, Kluck EB, Douglas RG, et al. The release of cytochrome c from mitochondria, a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132–1136.

    Article  Google Scholar 

  24. Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of bcl-2 to a bax-like death effector by caspases. Science. 1997;278:1966–1968.

    Article  CAS  PubMed  Google Scholar 

  25. Liang Y, Yan CH, Schor NF . Apoptosis in the absence of caspases 3. Oncogene. 2001;20:6570–6578.

    Article  CAS  PubMed  Google Scholar 

  26. Vargason JM, Szittya G, Burgyan J, et al. Size selective recognition of siRNA by an RNA silencing suppressor. Cell. 2003;115:799–811.

    Article  CAS  PubMed  Google Scholar 

  27. Janicke RU, Sprengart ML, Wati MR, et al. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273:9357–9360.

    Article  CAS  PubMed  Google Scholar 

  28. Nadeau, G . BRCA1 can stimulate gene transcription by a unique mechanism. EMBO Rep. 2000;1:260–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi YH, Choi BT, Lee WH, et al. Doenjang hexane fraction-induced G1 arrest is associated with the inhibition of pRB phosphorylation and induction of Cdk inhibitor p21 in human breast carcinoma MCF-7 cells. Oncol Rep. 2001;8:1091–1096.

    CAS  PubMed  Google Scholar 

  30. Rao S, Lowe M, Herliczek TW, et al. Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene. 1998;17:2393–2402.

    Article  CAS  PubMed  Google Scholar 

  31. Chinnaiyan AM, Orth K, O'Rourke K, et al. Molecular ordering of the cell death pathway. Bcl-2 and Bcl-xL function upstream of the CED-3-like apoptotic proteases. J Biol Chem. 1996;271:4573–4576.

    Article  CAS  PubMed  Google Scholar 

  32. Cowling V, Downward J . Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 2002;9:1046–1056.

    Article  CAS  PubMed  Google Scholar 

  33. Musgrove EA, Swarbrick A, Lee CS, et al. Mechanisms of cyclin-dependent kinase inactivation by progestins. Mol Cell Biol. 1998;18:1812–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Micheau O, Tschopp J . Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–190.

    Article  CAS  PubMed  Google Scholar 

  35. Nakashima S, Hiraku Y, Tada-Oikawa S, et al. Vacuolar H+-ATPase inhibitor induces apoptosis via lysosomal dysfunction in the human gastric cancer cell line MKN-1. J Biochem. 2003;134:359–364.

    Article  CAS  PubMed  Google Scholar 

  36. Sharpe JC, Arnoult D, Youle RJ . Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta. 2004;1644:107–113.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou XD . Recurrence and metastasis of hepatocellular carcinoma: progress and prospects. Hepatobiliary Pancreat Dis Int. 2002;1:35–41.

    PubMed  Google Scholar 

  38. Brummelkamp TR, Bernards R, Agamj R . Stable suppression of tumorigenicity by virus-mediated RNA. Cancer Cell. 2002;2:243–247.

    Article  CAS  PubMed  Google Scholar 

  39. Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1 infection. Nat Med. 2002;8:681–686.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC Grants (No. 30025043, 30271514), the National 863 and 973 Program Grants (No. 2002AA214021, 2002CB513108), and a grant from National Foundation for Cancer Research (USA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James Q Yin or Rong-guang Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Tg., Yin, J., Shang, By. et al. Silencing of hdm2 oncogene by siRNA inhibits p53-dependent human breast cancer. Cancer Gene Ther 11, 748–756 (2004). https://doi.org/10.1038/sj.cgt.7700753

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700753

Keywords

This article is cited by

Search

Quick links