Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitizing glioma cells to cisplatin by abrogating the p53 response with antisense oligonucleotides

Abstract

Most gene therapy strategies related to p53 concentrate on the restoration of the activity of mutant p53, as several observations indicate that tumors and cell lines having the mutant gene are resistant to chemotherapy. However, as there is also some evidence to the contrary, we studied the relationship of the p53 status to the cellular response of glioma cells that were exposed to cisplatin. At a concentration of 2.5 μg/ml (which is about half the peak pharmacological blood level reached during chemotherapy), U373MG glioma cells, which had a mutant p53 gene, were more sensitive to the drug as compared to U87MG glioma cells (with normal p53). The U373MG cells responded with apoptosis while U87MG cells responded with a G2–M arrest. In U87MG cells, blocking the p53 response by antisense oligonucleotides also sensitized the cells to 2.5 μg/ml cisplatin, and shifted the cellular response from arrest to caspase 3-mediated apoptosis. A sensitive, p53-independent, mechanism for chemotherapy-induced apoptosis suggests that, in some cases, p53 abrogation by gene therapy or small molecule-based strategies could be a viable therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ruley HE . p53 and response to chemotherapy and radiotherapy. In: DeVita VT, Hellman S, Rosenberg SA (eds) Important Advances in Oncology. Philadelphia, PA: JB Lippincott Co.; 1996: 37–56.

    Google Scholar 

  2. Iwadate Y, Fujimoto S, Tagawa M, et al. Association of p53 gene mutation with decreased chemosensitivity in human malignant gliomas. Int J Cancer. 1996;69:236–240.

    Article  CAS  PubMed  Google Scholar 

  3. Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang WW, Owen-Schaub LB, Roth JA . Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res. 1994;54:2287–2291.

    CAS  PubMed  Google Scholar 

  4. Dorigo O, Turla ST, Lebedeva S, Gjerset RA . Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function. J Neurosurg. 1998;88:535–540.

    Article  CAS  PubMed  Google Scholar 

  5. Lotem J, Sachs L . Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood. 1993;82:1092–1096.

    CAS  PubMed  Google Scholar 

  6. Aas T, Borresen AL, Geisler S, et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996;2:811–814.

    Article  CAS  PubMed  Google Scholar 

  7. Marks DI, Kurz BW, Link MP, et al. Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol. 1997;15:1158–1162.

    Article  CAS  PubMed  Google Scholar 

  8. Pollack IF, Finkelstein SD, Woods J, et al. Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med. 2002;346:420–427.

    Article  CAS  PubMed  Google Scholar 

  9. Badie B, Drazan KE, Kramar MH, Shaked A, Black KL . Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol Res. 1995;17:209–216.

    Article  CAS  PubMed  Google Scholar 

  10. Gjerset RA, Turla ST, Sobol RE, et al. Use of wild-type p53 to achieve complete treatment sensitization of tumor cells expressing endogenous mutant p53. Mol Carcinogen. 1995;14:275–285.

    Article  CAS  Google Scholar 

  11. Kock H, Harris MP, Anderson SC, et al. Adenovirus-mediated p53 gene transfer suppresses growth of human glioblastoma cells in vitro and in vivo. Int J Cancer. 1996;67:808–815.

    Article  CAS  PubMed  Google Scholar 

  12. Hsiao M, Tse V, Carmel J, et al. Intracavitary liposome-mediated p53 gene transfer into glioblastoma with endogenous wild-type p53 in vivo results in tumor suppression and long-term survival. Biochem Biophys Res Commun. 1997;233:359–364.

    Article  CAS  PubMed  Google Scholar 

  13. Burger H, Nooter K, Boersma AW, Kortland CJ, Stoter G . Lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in testicular germ cell tumour cell lines. Int J Cancer. 1997;73:592–599.

    Article  CAS  PubMed  Google Scholar 

  14. Haas-Kogan DA, Yount G, Haas M, et al. p53-dependent G1 arrest and p53-independent apoptosis influence the radiobiologic response of glioblastoma. Int J Radiat Oncol Biol Phys. 1996;36:95–103.

    Article  CAS  PubMed  Google Scholar 

  15. Malcomson RD, Oren M, Wyllie AH, Harrison DJ . p53-independent death and p53-induced protection against apoptosis in fibroblasts treated with chemotherapeutic drugs. Br J Cancer. 1995;72:952–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Makris A, Powles TJ, Dowsett M, Allred C . p53 protein overexpression and chemosensitivity in breast cancer. Lancet. 1995;345:1181–1182.

    Article  CAS  PubMed  Google Scholar 

  17. Mathieu MC, Koscielny S, Le Bihan ML, Spielmann M, Arriagada R . p53 protein overexpression and chemosensitivity in breast cancer. Institut Gustave-Roussy Breast Cancer Group. Lancet. 1995;345:1182.

    Article  CAS  PubMed  Google Scholar 

  18. Brachman DG, Beckett M, Graves D, Haraf D, Vokes E, Weichselbaum RR . p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res. 1993;53:3667–3669.

    CAS  PubMed  Google Scholar 

  19. Bullock AN, Fersht AR . Rescuing the function of mutant p53. Nat Rev Cancer. 2001;1:68–76.

    Article  CAS  PubMed  Google Scholar 

  20. Leonard CJ, Canman CE, Kastan MB . The role of p53 in cell-cycle control and apoptosis: implications for cancer. In: De Vito V, Hallman S, Rosenberg S (eds) Important Advances in Oncology. Philadelphia, PA: JB Lippincot; 1995: 33–42.

    Google Scholar 

  21. Hartwell LH, Kastan MB . Cell cycle control and cancer. Science. 1994;266:1821–1828.

    Article  CAS  PubMed  Google Scholar 

  22. Koechli O, Schaer GN, Seifert B, et al. Mutant p53 protein associated with chemosensitivity in breast cancer specimens. Lancet. 1994;344:1647–1648.

    Article  CAS  PubMed  Google Scholar 

  23. Allred DC, Clark GM, Elledge R, et al. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst. 1993;85:200–206.

    Article  CAS  PubMed  Google Scholar 

  24. Fan S, Smith ML, Rivet 2nd DJ, et al. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 1995;55:1649–1654.

    CAS  PubMed  Google Scholar 

  25. Hawkins DS, Demers GW, Galloway DA . Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res. 1996;56:892–898.

    CAS  PubMed  Google Scholar 

  26. Wu GS, El-Deiry WS . Apoptotic death of tumor cells correlates with chemosensitivity, independent of p53 or bcl-2. Clin Cancer Res. 1996;2:623–633.

    CAS  PubMed  Google Scholar 

  27. El-Mahdy MA, Hamada FM, Wani MA, Zhu Q, Wani AA . p53-degradation by HPV-16 E6 preferentially affects the removal of cyclobutane pyrimidine dimers from non-transcribed strand and sensitizes mammary epithelial cells to UV-irradiation. Mutat Res. 2000;459:135–145.

    Article  CAS  PubMed  Google Scholar 

  28. Chang FL, Lai MD . The relationship between p53 status and anticancer drugs-induced apoptosis in nine human bladder cancer cell lines. Anticancer Res. 2000;20:351–355.

    CAS  PubMed  Google Scholar 

  29. Kandioler-Eckersberger D, Ludwig C, Rudas M, et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res. 2000;6:50–56.

    CAS  PubMed  Google Scholar 

  30. Ogawa Y, Nishioka A, Inomata T, et al. Ionizing radiation-induced apoptosis in human lymphoma cell lines differing in p53 status. Int J Mol Med. 2000;5:139–143.

    CAS  PubMed  Google Scholar 

  31. Poppenborg H, Knupfer MM, Preiss R, Wolff JE, Galla HJ . Cisplatin (CDDP)-induced radiation resistance is not associated with CDDP resistance in 86HG39 and A172 malignant glioma cells. Eur J Cancer. 1999;35:1150–1154.

    Article  CAS  PubMed  Google Scholar 

  32. Fulci G, Ishii N, Van Meir EG . p53 and brain tumors: from gene mutations to gene therapy. Brain Pathol. 1998;8:599–613.

    Article  CAS  PubMed  Google Scholar 

  33. Iwadate Y, Tagawa M, Fujimoto S, et al. Mutation of the p53 gene in human astrocytic tumours correlates with increased resistance to DNA-damaging agents but not to anti-microtubule anti-cancer agents. Br J Cancer. 1998;77:547–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Datta K, Babbar P, Srivastava T, Sinha S, Chattopadhyay P . p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress. Int J Biochem Cell Biol. 2002;34:148–157.

    Article  CAS  PubMed  Google Scholar 

  35. Lanza F, Bi S, Moretti S, Castoldi G, Goldman JM . Modulation of cell kinetics and cell cycle status by treating CD34+ chronic myeloid leukaemia cells with p53 antisense phosphorothioate oligonucleotides. Br J Haematol. 1995;90:8–14.

    Article  CAS  PubMed  Google Scholar 

  36. Kolfschoten GM, Hulscher TM, Schrier SM, van Houten VM, Pinedo HM, Boven E . Time-dependent changes in factors involved in the apoptotic process in human ovarian cancer cells as a response to cisplatin. Gynecol Oncol. 2002;84:404–412.

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi D, Tokino T, Watanabe N . Contribution of caspase-3 differs by p53 status in apoptosis induced by X-irradiation. Jpn J Cancer Res. 2001;92:475–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen Y, White E . p53-dependent apoptosis pathways. Adv Cancer Res. 2001;82:55–84.

    Article  CAS  PubMed  Google Scholar 

  39. Massey A, Offman J, Macpherson P, Karran P . DNA mismatch repair and acquired cisplatin resistance in E. coli and human ovarian carcinoma cells. DNA Repair (Amst). 2003;2:73–89.

    Article  CAS  Google Scholar 

  40. Shelling AN . Role of p53 in drug resistance in ovarian cancer. Lancet. 1997;349:744–745.

    Article  CAS  PubMed  Google Scholar 

  41. Reles A, Wen WH, Schmider A, et al. Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res. 2001;7:2984–2997.

    CAS  PubMed  Google Scholar 

  42. Rusch V, Klimstra D, Venkatraman E, et al. Aberrant p53 expression predicts clinical resistance to cisplatin-based chemotherapy in locally advanced non-small cell lung cancer. Cancer Res. 1995;55:5038–5042.

    CAS  PubMed  Google Scholar 

  43. Kastan MB, Zhan Q, el-Deiry WS, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–597.

    Article  CAS  PubMed  Google Scholar 

  44. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401:616–620.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor WR, Stark GR . Regulation of the G2/M transition by p53. Oncogene. 2001;20:1803–1815.

    Article  CAS  PubMed  Google Scholar 

  46. Serafin AM, Binder AB, Bohm L . Chemosensitivity of prostatic tumour cell lines under conditions of G2 block abrogation. Urol Res. 2001;29:221–227.

    Article  CAS  PubMed  Google Scholar 

  47. Binder AB, Serafin AM, Bohm LJ . Abrogation of G(2)/M-phase block enhances the cytotoxicity of daunorubicin, melphalan and cisplatin in TP53 mutant human tumor cells. Radiat Res. 2000;154:640–649.

    Article  CAS  PubMed  Google Scholar 

  48. Strunz AM, Peschke P, Waldeck W, Ehemann V, Kissel M, Debus J . Preferential radiosensitization in p53-mutated human tumour cell lines by pentoxifylline-mediated disruption of the G2/M checkpoint control. Int J Radiat Biol. 2002;78:721–732.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology, India vide a Swarnajayanti Fellowship Grant to Subrata Sinha. Preeti Shah is a recipient of a Senior Research Fellowship of the CSIR. We are thankful to Mathura Prasad for technical assistance and to Satish Kumar for secretarial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, K., Shah, P., Srivastava, T. et al. Sensitizing glioma cells to cisplatin by abrogating the p53 response with antisense oligonucleotides. Cancer Gene Ther 11, 525–531 (2004). https://doi.org/10.1038/sj.cgt.7700724

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700724

Keywords

This article is cited by

Search

Quick links