Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity

Abstract

We report here that gene transfer using recombinant adenoviruses encoding interleukin (IL)-18 mutants induces potent antitumor activity in vivo. The precursor form of IL-18 (ProIL-18) is processed by caspase-1 to produce bioactive IL-18, but its cleavage by caspase-3 (CPP32) produces an inactive form. To prepare IL-18 molecules with an effective antitumor activity, a murine IL-18 mutant with the signal sequence of murine granulocyte-macrophage (GM)- colony stimulating factor (CSF) at the 5′-end of mature IL-18 cDNA (GMmIL-18) and human IL-18 mutant with the prepro leader sequence of trypsin (PPT), which is not cleaved by caspase-3 (PPThIL-18CPP32), respectively, were constructed. Adenovirus vectors carrying GMmIL-18 or PPThIL-18CPP32 produced bioactive IL-18. Ad.GMmIL-18 had a more potent antitumor effect than Ad.mProIL-18 encoding immature IL-18 in renal cell adenocarcinoma (Renca) tumor-bearing mice. Tumor-specific cytotoxic T lymphocytes, the induction of Th1 cytokines, and an augmented natural killer (NK) cell activity were detected in Renca tumor-bearing mice treated with Ad.GMmIL-18. An immunohistological analysis revealed that CD4+ and CD8+ T cells abundantly infiltrated into tumors of mice treated with Ad.GMmIL-18. Huh-7 human hepatoma tumor growth in nude mice with a defect of T cell function was significantly inhibited by Ad.PPThIL-18CPP32 compared with Ad.hProIL-18 encoding immature IL-18. Nude mice treated with Ad.PPThIL-18CPP32 contained NK cells with increased cytotoxicity. The results suggest that the release of mature IL-18 in tumors is required for achieving an antitumor effect including tumor-specific cellular immunity and augmented NK cell-mediated cytotoxicity. These optimally designed IL-18 mutants could be useful for improving the antitumor effectiveness of wild-type IL-18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 6
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Okamura H, Tsutsi H, Komatsu T, et al. A novel cytokine that induces IFN-γ production by T cells. Nature. 1995;378:88–91.

    Article  CAS  PubMed  Google Scholar 

  2. Dinarello CA, Novick D, Puren AJ, et al. Overview of interleukin-18: more than an interferon-γ inducing factor. J Leuk Biol. 1998;63:658–664.

    Article  CAS  Google Scholar 

  3. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H . Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol. 2001;19:423–474.

    Article  CAS  PubMed  Google Scholar 

  4. Golab J . Interleukin 18 — interferon γ inducing factor — a novel player in tumor immunotherapy? Cytokine. 2000;12:332–338.

    Article  CAS  PubMed  Google Scholar 

  5. Stoll S, Muller G, Kurimoto M, et al. Production of IL-18 (IFN-γ-inducing factor) messenger RNA and functional protein by murine keratinocytes. J Immunol. 1997;159:298–302.

    CAS  PubMed  Google Scholar 

  6. Udagawa N, Horwood NJ, Elliott J, et al. Interleukin-18 (interferon-γ-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage-stimulating factor and not via interferon-γ to inhibit osteoclast formation. J Exp Med. 1997;185:1005–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conti B, Jahng JW, Tinti C, et al. Induction of interferon-γ inducing factor in the adrenal cortex. J Biol Chem. 1997;272:2035–2037.

    Article  CAS  PubMed  Google Scholar 

  8. Cho D, Song H, Kim YM, et al. Endogenous interleukin-18 modulates immune escape of murine melanoma cells by regulating the expression of Fas ligand and reactive oxygen intermediates. Cancer Res. 2000;60:2703–2709.

    CAS  PubMed  Google Scholar 

  9. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature. 1997;386:619–623.

    Article  CAS  PubMed  Google Scholar 

  10. Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science. 1997;275:206–209.

    Article  CAS  PubMed  Google Scholar 

  11. Fantuzzi G, Dinallero CA . Interleukin-18 and interleukin-1 beta: two cytokines substrates for ICE (caspase-1). J Clin Immunol. 1999;19:1–11.

    Article  CAS  PubMed  Google Scholar 

  12. Akita K, Ohtsuki T, Nukada Y, et al. Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP.1 cells. Biol Chem. 1997;272:26595–26603.

    Article  CAS  Google Scholar 

  13. Osaki T, Hashimoto W, Gambotto A, et al. Potent antitumor effects mediated by local expression of the mature form of the interferon-γ inducing factor, interleukin-18 (IL-18). Gene Ther. 1999;6:808–815.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshimura K, Hazama S, Iizuka N, et al. Successful immunogene therapy using colon cancer cells (colon 26) transfected with plasmid vector containing mature interleukin-18 cDNA and the Igκ leader sequence. Cancer Gene Ther. 2001;8:9–16.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida Y, Tasaki K, Kimurai M, et al. Antitumor effect of human pancreatic cancer cells transduced with cytokine genes which activate Th1 helper T cells. Anticancer Res. 1998;18:333–335.

    CAS  PubMed  Google Scholar 

  16. Weitzman MD, Wilson JM, Eck SL . Adenovirus vectors in cancer gene therapy. In: Sobol RE and Scanlon KJ, eds. The Internet Book of Gene Therapy, Cancer Therapeutics. CJ, USA: Appleton & Lange; 1995: 17–25.

    Google Scholar 

  17. Seong YR, Choi S, Lim JS, et al. Immunogenicity of the E1E2 proteins of hepatitis C virus expressed by recombinant adenoviruses. Vaccine. 2001;19:2955–2964.

    Article  CAS  PubMed  Google Scholar 

  18. Vile RG, Russell SJ, Lemoine NR . Cancer gene therapy: hard lessons and new courses. Gene Ther. 2000;7:2–9.

    Article  CAS  PubMed  Google Scholar 

  19. Oshikawa K, Shi F, Rakhmilevich AL, et al. Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1β converting enzyme cDNA. Proc Natl Acad Sci USA. 1999;96:13351–13356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Puren AJ, Fantuzzi G, Dinarello CA . Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1β are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA. 1999;96:2256–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perregaux D, McNiff P, Laliberte R, Conklyn M, Gabel CA . ATP acts as an agonist to promote stimulus-induced secretion of IL-1β and IL-18 in human blood. J Immunol. 2000;165:4615–4623.

    Article  CAS  PubMed  Google Scholar 

  22. Mehta VB, Hart J, Wewers MD . ATP-dependent release of interleukin (IL)-1β and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem. 2001;276:3820–3826.

    Article  CAS  PubMed  Google Scholar 

  23. Sanghyeon Kim, Suh KS, Seong YR, et al. Adenovirus-mediated mGM-CSF in vivo gene transfer inhibits tumor growth in a murine Meth A fibrosarcoma model. J Kor Soc Virol. 2000;30:141–150.

    Google Scholar 

  24. Hara S, Nagai H, Miyake H, et al. Secreted type of modified interleukin-18 gene transduction into mouse renal cell carcinoma cells induces systemic tumor immunity. J Urol. 2001;165:2039–2043.

    Article  CAS  PubMed  Google Scholar 

  25. Goto H, Osaki T, Nishino K, et al. Construction and analysis of new vector systems with improved interleukin-18 secretion in a xenogeneic human tumor model. J Immunother. 2002;25:S35–S41.

    Article  CAS  PubMed  Google Scholar 

  26. Nagai H, Hara I, Horikawa T, et al. Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumor growth through inhibition of tumor vessel formation. J Invest Dermatol. 2002;119:541–548.

    Article  CAS  PubMed  Google Scholar 

  27. Pirhonen J, Sareneva T, Julkunen I, Matikainen S . Virus infection induces proteolytic processing of IL-18 in human macrophages via caspase-1 and caspase-3 activation. Eur J Immunol. 2001;31:726–733.

    Article  CAS  PubMed  Google Scholar 

  28. Novick D, Kim SH, Fantuzzi G, et al. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity. 1999;10:127–136.

    Article  CAS  PubMed  Google Scholar 

  29. Kim SH, Eisenstein M, Reznikov L, et al. Structural requirements of six naturally occurring isoform of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA. 2000;97:1190–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim SH, Azam T, Yoon DY, et al. Site-specific mutations in the mature form of human IL-18 with enhanced biological activity and decreased neutralization by IL-18 binding protein. Proc Natl Acad Sci USA. 2001;98:3304–3309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ju DW, Yang Y, Tao Q, et al. Interleukin-18 gene transfer increases antitumor effects of suicide gene therapy through efficient induction of anitumor immunity. Gene Therapy. 2000;7:1672–1679.

    Article  CAS  PubMed  Google Scholar 

  32. Sgadari C, Angiolillo AL, Tosato G . Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein-10. Blood. 1996;87:3877–3882.

    CAS  PubMed  Google Scholar 

  33. Coughlin CM, Salhany KE, Wysocka M, et al. Interleukin-12 and interleukin-18 synergistically induces murine tumor regression which involves inhibition of angiogenesis. J Clin Invest. 1998;101:1441–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao R, Farnebo J, Kurimoto M, Cao Y . Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J. 1999;13:2195–2202.

    Article  CAS  PubMed  Google Scholar 

  35. Yao L, Sgadari C, Furuke K, et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood. 1999;93:1612–1621.

    CAS  PubMed  Google Scholar 

  36. Micallef MJ, Tanimoto T, Kohno K, Ikeda M, Kurimoto M . Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res. 1997;57:4557–4563.

    CAS  PubMed  Google Scholar 

  37. Tanaka F, Hashimoto W, Okamura H, et al. Rapid generation of potent and tumor-specific cytotoxic T lymphocytes by interleukin-18 using dendritic cells and natural killer cells. Cancer Res. 2000;60:4838–4844.

    CAS  PubMed  Google Scholar 

  38. Ju DW, Tao Q, Lou G, et al. Interleukin 18 transfection enhances antitumor immunity induced by dendritic cell-tumor cell conjugates. Cancer Res. 2001;61:3735–3740.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sanghyeon Kim for cloning of IL-18 cDNAs, and JS Lim and KD Kim for immunological assays.

This work was supported by a Grant (FG03-32-02) of 21C Frontier Functional Genome Project from the Ministry of Science and Technology, South Korea.

Kyung-Sun Hwang and Won-Kyung Cho have contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Soo Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, KS., Cho, WK., Yoo, J. et al. Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity. Cancer Gene Ther 11, 397–407 (2004). https://doi.org/10.1038/sj.cgt.7700711

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700711

Keywords

This article is cited by

Search

Quick links