Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A DNA vaccine expressing tyrosinase-related protein-2 induces T-cell-mediated protection against mouse glioblastoma

Abstract

A mouse glioblastoma cell line, termed GL261, was shown to express high levels of proteins involved in melanin biosynthesis such as the tyrosinase-related protein-2 (TRP-2), which is commonly overexpressed in melanoma cells. Mice injected with GL261 cells developed a CD8+ T-cell response to TRP-2 and a DNA vaccine expressing human (h)TRP-2 induced CD8+ T cells that recognized TRP-2 expressed by GL261 cells indicating that this melanoma-associated antigen may be suited for active immunotherapy of glioblastoma. Mice vaccinated with a DNA vaccine expressing TRP-2 were partially protected against subcutaneous, intravenous, or intracerebral challenge with the glioblastoma cells. Vaccine-induced protection against intracerebral challenge required both CD4+ and CD8+ T cells. Vaccine efficacy was enhanced upon addition of IL-12 as a genetic adjuvant. These results indicate that this well-defined melanoma-associated antigen can induce an adaptive immune response, which limits the intracerebral progression of a glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

References

  1. Mahaley MS, Mettlin C, Natarajan N, et al. National survey of patterns of care for brain-tumor patients. J Neurosurg. 1989;71:826–836.

    Article  Google Scholar 

  2. Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA. 1998;95:13141–13146.

    Article  CAS  Google Scholar 

  3. Gilboa E, Nair SK, Lyerly HK . Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother. 1998;46:82–87.

    Article  CAS  Google Scholar 

  4. Tuting T, Gambotto A, DeLeo A, et al. Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. Cancer Gene Ther. 1999;6:73–80.

    Article  CAS  Google Scholar 

  5. Hawkins WG, Gold JS, Blachere NE, et al. Xenogeneic DNA immunization in melanoma models for minimal residual disease. J Surg Res. 2002;102:137–143.

    Article  CAS  Google Scholar 

  6. Bronte V, Apolloni E, Ronca R, et al. Genetic vaccination with “self” tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res. 2000;60:253–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendiratta SK, Thai G, Eslahi, NK, et al. Therapeutic tumor immunity induced by polyimmunization with melanoma antigens gp100 and TRP-2. Cancer Res. 2001;61:859–863.

    CAS  PubMed  Google Scholar 

  8. Tanaka M, Kaneda Y, Fujii S, et al. Induction of a systemic immune response by a polyvalent melanoma-associated antigen DNA vaccine for prevention and treatment of malignant melanoma. Mol Ther. 2002;5:291–299.

    Article  CAS  Google Scholar 

  9. O I, Ku G, Ertl HC, et al. A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res. 2002;22:613–621.

    Google Scholar 

  10. Kowalczyk D, Wlazlo AP, Giles-Davis W, et al. Staining of antigen activated lymphocytes (SAAL): a highly specific method for amplification of tumor-specific CD8+ T cells. J Immunol Methods 2000;241:131–139.

    Article  CAS  Google Scholar 

  11. Kleinman HK, McGarvey ML, Liotta LA, et al. Isolation and characterization of type IV procollagen, laminin and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982;21: 6188–6193.

    Article  CAS  Google Scholar 

  12. Parkhurst MR, Fitzgerald EB, Southwood S, et al. Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res. 1998;58:4895–4901.

    CAS  PubMed  Google Scholar 

  13. Yokoyama K, Suzuki H, Yasumoto K, et al. Molecular cloning and functional analysis of a cDNA coding for human DOPAchrome tautomerase/tyrosinase-related protein-2. Biochem Biophys Acta. 1994;1217:317–321.

    CAS  PubMed  Google Scholar 

  14. He Z, Wlazlo AP, Kowalczyk DW, et al. Viral recombinant vaccines to the E6 and E7 antigens of HPV-16. Virology. 2000;270:146–161.

    Article  CAS  Google Scholar 

  15. Overwijk WW, Restifo NP . Autoimmunity and the immunotherapy of cancer: targeting the “self” to destroy the “other”. Crit Rev Immunol. 2000;20:433–450.

    Article  CAS  Google Scholar 

  16. Steitz J, Bruck J, Steinbrink K, et al. Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer. 2000;86:89–94.

    Article  CAS  Google Scholar 

  17. Overwijk WW, Lee DS, Surman DR, et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Acad Natl Sci USA. 1999;96:2982–2987.

    Article  CAS  Google Scholar 

  18. Pertmer TM, Oran AE, Madorin CA, et al. Th1 genetic adjuvants modulate immune responses in neonates. Vaccine. 2001;19:1764–1771.

    Article  CAS  Google Scholar 

  19. Deng H, Kowalczyk D, O I, et al. A modified DNA vaccine to p53 induces protective immunity to challenge with a chemically induced sarcoma cell line. Cell Immunol. 2002;215:20–31.

    Article  CAS  Google Scholar 

  20. Pisetsky DS . Mechanisms of immune stimulation by bacterial DNA. Springer Sem Immunopathol 2000;22:21–33.

    Article  CAS  Google Scholar 

  21. Krieg AM . CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–760.

    Article  CAS  Google Scholar 

  22. Tuting T, Gambotto A, DeLeo A, et al. Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. Cancer Gene Ther. 1999;6:73–80.

    Article  CAS  Google Scholar 

  23. Le TP, Coonan KM, Hedstrom RC, et al. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine. 2000;18:1893–1901.

    Article  CAS  Google Scholar 

  24. Wang R, Doolan, DL, Le TP, et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science. 1998;282:476–480.

    Article  CAS  Google Scholar 

  25. MacGregor RR, Boyer JD, Ugen KE, et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis. 1998;178:92–100.

    Article  CAS  Google Scholar 

  26. Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259:1745–1749.

    Article  CAS  Google Scholar 

  27. Xiang ZQ, Ertl HCJ . Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmid expressing cytokines. Immunity. 1995;2:129–136.

    Article  CAS  Google Scholar 

  28. Barouch DH, Craiu A, Santra S, et al. Elicitation of high-frequency cytotoxic T-lymphocyte responses against both dominant and subdominant simian–human immunodeficiency virus epitopes by DNA vaccination of rhesus monkeys. J Virol. 2001;75:2462–2467.

    Article  CAS  Google Scholar 

  29. Xiang ZQ, Pasquini S, Ertl HCJ . Induction of genital immunity by DNA priming and intranasal booster immunization with a replication-defective adenoviral recombinant. J Immunol. 1999;162:6716–6723.

    CAS  PubMed  Google Scholar 

  30. Huang SK, Okamoto T, Morton DL, et al. Antibody responses in melanoma/melanocytes autoantigens in melanoma patients. J Int Dermatol. 1998;111:662–667.

    Article  CAS  Google Scholar 

  31. Reynolds SR, Celis E, Sette A, et al. HLA-independent heterogeneity of CD8+ T cell responses to MAGE-3, Melan-A/MART-1, gp100, tyrosinase, MC1R and TRP-2 in vaccine-treated melanoma patients. J Immunol. 1998;161:6970–6976.

    CAS  PubMed  Google Scholar 

  32. Sgadari C, Angiolillo AL, Tosato G . Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood. 1996;87:3877–3882.

    CAS  PubMed  Google Scholar 

  33. Rubin LL, Staddon JM . The cell biology of the blood–brain barrier. Annu Rev Neurosci. 1999;2:11–28.

    Article  Google Scholar 

  34. Joly E, Mucke L, Oldstone M . Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science. 1991;253:1283–1285.

    Article  CAS  Google Scholar 

  35. Frei K, Fontana A . Antigen presentation in the CNS. Mol Psychol. 1997;2:96–98.

    Article  CAS  Google Scholar 

  36. De Micco C . Immunology of central nervous system tumors. J Neuroimmunol. 1989;25:93–108.

    Article  CAS  Google Scholar 

  37. De Micco C . Immunology of tumors of the central nervous system. Bull Cancer. 1989;76:17–31.

    CAS  PubMed  Google Scholar 

  38. Saas P, Walker PR, Hahne M, et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest. 1997;99:1173–1178.

    Article  CAS  Google Scholar 

  39. Weller M, Fontana A . The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. Brain Res Rev. 1995;21:128–151.

    Article  CAS  Google Scholar 

  40. Fontana A, Bodmer S, Frei K, et al. Expression of TGF-beta 2 in human glioblastoma: a role in resistance to immune rejection? Ciba Found Symp. 1991;157:232–241.

    CAS  PubMed  Google Scholar 

  41. Weller M, Constam DB, Malipiero U, et al. Transforming growth factor-beta 2 induces apoptosis of murine T cell clones without down-regulating bcl-2 mRNA expression. Eur J Immunol. 1994;24:1293–1300.

    Article  CAS  Google Scholar 

  42. Zou JP, Morford LA, Chougnet C, et al. Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. J Immunol. 1999;162:4882–4892.

    CAS  PubMed  Google Scholar 

  43. Pazmany T, Kosa JP, Tomasi TB, et al. Effect of transforming growth factor-beta1 on microglial MHC-class II expression. J Neuroimmunol. 2000;103:122–130.

    Article  CAS  Google Scholar 

  44. Aloisi F, De Simone R, Columba-Cabezas S, et al. Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and anti-inflammatory activities. J Neurosci Res. 1999;56:571–580.

    Article  CAS  Google Scholar 

  45. Janabi N, Hau I, Tardieu M . Negative feedback between prostaglandin and alpha- and beta-chemokine synthesis in human microglial cells and astrocytes. J Immunol. 1999;162:1701–1706.

    CAS  PubMed  Google Scholar 

  46. Hishii M, Nitta T, Ishida H, et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery. 1995;37:1160–1166.

    Article  CAS  Google Scholar 

  47. Knolle PA, Uhrig A, Hegenbarth S, et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol. 1998;114:427–433.

    Article  CAS  Google Scholar 

  48. Frei K, Lins H, Schwerdel C, et al. Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol. 1994;152:2720–2728.

    CAS  PubMed  Google Scholar 

  49. Allegretta M, Albertini RJ, Howell MD, et al. Homologies between T cell receptor junctional sequences unique to multiple sclerosis and T cells mediating experimental allergic encephalomyelitis. J Clin Invest. 1994;94:105–109.

    Article  CAS  Google Scholar 

  50. Soderstrom M, Link H, Sun JB, et al. Autoimmune T cell repertoire in optic neuritis and multiple sclerosis: T cells recognizing multiple myelin proteins are accumulated in cerebrospinal fluid. J Neurol Neurosurg Psychiatry. 1994;55:544–551.

    Article  Google Scholar 

  51. Kalman B, Knobler RL, Lublin FD . Preferential but not exclusive T cell receptor V beta chain utilization of myelin basic protein and peptide-specific T cell clones in mice. Cell Immunol. 1994;153:206–213.

    Article  CAS  Google Scholar 

  52. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993;90:3539–3543.

    Article  CAS  Google Scholar 

  53. Wakimoto H, Yoshida Y, Aoyagi M, et al. Efficient retrovirus-mediated cytokine-gene transduction of primary-cultured human glioma cells for tumor vaccination therapy. J Cancer Res. 1997;88:296–305.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms W Giles-Davis for technical assistance and Ms Cole for preparation of the manuscript. This work was supported by a grant from the Katie's Kids Brain Tumor Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hildegund CJ Ertl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O, I., Blaszczyk-Thurin, M., Shen, C. et al. A DNA vaccine expressing tyrosinase-related protein-2 induces T-cell-mediated protection against mouse glioblastoma. Cancer Gene Ther 10, 678–688 (2003). https://doi.org/10.1038/sj.cgt.7700620

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700620

Keywords

This article is cited by

Search

Quick links