Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effective induction of antiglioma cytotoxic T cells by coadministration of interferon-β gene vector and dendritic cells

Abstract

As type I interferons (IFNs) enhance the stimulatory activity of dendritic cells (DCs), we hypothesized that transfection of glioma cells with the IFN-β gene in the presence of DCs would provide particularly effective antitumor activity by both facilitating apoptosis of glioma cells and presenting the resulting glioma antigens to T cell by DCs, thereby inducing specific T-cell responses against glioma cells. A mouse glioma cell line 203G was first transfected with cDNA encoding IFN-β using cationic liposomes, then cocultured with syngeneic bone marrow-derived DCs and naïve splenic T cells. The 203G cells were almost completely killed following 96-hour coculture with DCs and T cells, and strong tumor-specific cytotoxic T-lymphocyte (CTL) activity accompanied by high level interleukin (IL)-12 and IFN-γ production was observed in culture. In addition, omission of either IFN-β gene delivery, DCs or T cells from the coculture completely abrogated the induction of the CTL activity, suggesting that the combination of these components was required to elicit an optimal effect. On the basis of these in vitro data, syngeneic animals bearing subcutaneous 203G tumors received intratumoral injections of IFN-β gene and DCs. Suppression of the tumor growth by this combinational therapy was superior to treatment with DC or IFN-β gene solely. This combination may constitute a new therapeutic strategy to induce potent antiglioma immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

IFN:

interferon

DC:

dendritic cell

CTL:

cytotoxic T cell

IL:

interleukin

TNF:

tumor necrosis factor

NK:

natural killer

TRAIL:

tumor necrosis factor-a (TNF-a)-related apoptosis-inducing ligand

Neo-R:

neomycin resistant gene

VEC-DIC:

video-enhanced contrast-differential contrast

CM:

complete media

References

  1. De Maeyer E, De Maeyer-Guignard J, Thomson A, eds. Interferons. In: The Cytokine Handbook, 3rd edn. Vol. 18, 1998:491–516. Academic Press, New York.

    Google Scholar 

  2. Johns TG, Mackay IR, Callister KA, et al. Antiproliferative potencies of interferons on melanoma cell lines and xenografts: higher efficacy of interferon beta. J Natl Cancer Inst. 1992;84:1185–1190.

    Article  CAS  Google Scholar 

  3. Buckner JC, Schomberg PJ, McGinnis WL, et al. A phase III study of radiation therapy plus carmustine with or without recombinant interferon-alpha in the treatment of patients with newly diagnosed high-grade glioma. Cancer. 2001;92:420–433.

    Article  CAS  Google Scholar 

  4. Wakabayashi T, Yoshida J, Mizuno M, et al. Effectiveness of interferon-beta, ACNU, and radiation therapy in pediatric patients with brainstem glioma. Neurol Med Chir (Tokyo). 1992;32:942–946.

    Article  CAS  Google Scholar 

  5. Yoshida J, Kajita Y, Wakabayashi T, et al. Long-term follow-up results of 175 patients with malignant glioma: importance of radical tumour resection and postoperative adjuvant therapy with interferon, ACNU and radiation. Acta Neurochir (Wien). 1994;127:55–59.

    Article  CAS  Google Scholar 

  6. Wakabayashi T, Hatano N, Kajita Y, et al. Initial and maintenance combination treatment with interferon-beta, MCNU (Ranimustine), and radiotherapy for patients with previously untreated malignant glioma. J Neurooncol. 2000;49:57–62.

    Article  CAS  Google Scholar 

  7. Yoshida J, Mizuno M, Yagi K . Cytotoxicity of human beta-interferon produced in human glioma cells transfected with its gene by means of liposomes. Biochem Int. 1992;28:1055–1061.

    CAS  PubMed  Google Scholar 

  8. Mizuno M, Yoshida J, Sugita K, et al. Growth inhibition of glioma cells transfected with the human beta-interferon gene by liposomes coupled with a monoclonal antibody. Cancer Res. 1990;50:7826–7829.

    CAS  PubMed  Google Scholar 

  9. Natsume A, Mizuno M, Ryuke Y, et al. Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther. 1999;6:1626–1633.

    Article  CAS  Google Scholar 

  10. Natsume A, Tsujimura K, Mizuno M, et al. IFN-beta gene therapy induces systemic antitumor immunity against malignant glioma. J Neurooncol. 2000;47:117–124.

    Article  CAS  Google Scholar 

  11. Mizuno M, Yoshida J . Effect of human interferon beta gene transfer upon human glioma, transplanted into nude mouse brain, involves induced natural killer cells. Cancer Immunol Immunother. 1998;47:227–232.

    Article  CAS  Google Scholar 

  12. Tjuvajev J, Gansbacher B, Desai R, et al. RG-2 glioma growth attenuation and severe brain edema caused by local production of interleukin-2 and interferon-gamma. Cancer Res. 1995;55:1902–1910.

    CAS  PubMed  Google Scholar 

  13. Sampson JH, Ashley DM, Archer GE, et al. Characterization of a spontaneous murine astrocytoma and abrogation of its tumorigenicity by cytokine secretion. Neurosurg. 1997;41:1365–1372.

    Article  CAS  Google Scholar 

  14. Santini SM, Lapenta C, Logozzi M, et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med. 2000;191:1777–1788.

    Article  CAS  Google Scholar 

  15. Liu S, Yu Y, Zhang M, et al. The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. J Immunol. 2001;166:5407–5415.

    Article  CAS  Google Scholar 

  16. Lotze MT . Getting to the source: dendritic cells as therapeutic reagents for the treatment of cancer patients (Editorial). Ann Surg. 1997;226:1–5.

    Article  CAS  Google Scholar 

  17. Lanzavecchia A, Sallusto F . Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science. 2000;290:92–97.

    Article  CAS  Google Scholar 

  18. Nestle FO, Banchereau J, Hart D . Dendritic cells: on the move from bench to bedside. Nat Med. 2001;7:761–765.

    Article  CAS  Google Scholar 

  19. Luft T, Pang KC, Thomas E, et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol. 1998;161:1947–1953.

    CAS  PubMed  Google Scholar 

  20. Paquette RL, Hsu NC, Kiertscher SM, et al. Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukocyte Biol. 1998;64:358–367.

    Article  CAS  Google Scholar 

  21. Parlato S, Santini SM, Lapenta C, et al. Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood. 2001;98:3022–3029.

    Article  CAS  Google Scholar 

  22. Gallucci S, Lolkema M, Matzinger P . Natural adjuvants: endogenous activators of dendritic cells. Nat Med. 1999;5:1249–1255.

    Article  CAS  Google Scholar 

  23. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998;392:86–89.

    Article  CAS  Google Scholar 

  24. Albert ML, Pearce SF, Francisco LM, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med. 1998;188:1359–1368.

    Article  CAS  Google Scholar 

  25. Inaba K, Turley S, Yamaide F, et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med. 1998;188:2163–2173.

    Article  CAS  Google Scholar 

  26. Yamasaki T, Handa H, Yamashita J, et al. Establishment of experimental malignant glioma-specific cytotoxic T lymphocyte clone by T cell growth factor. J Neurosurg. 1984;60:998–1004.

    Article  CAS  Google Scholar 

  27. Yamasaki T, Handa H, Yamashita J, et al. Specific adoptive immunotherapy with tumor-specific cytotoxic T-lymphocyte clone for murine malignant gliomas. Cancer Res. 1984;44:1776–1783.

    CAS  PubMed  Google Scholar 

  28. Yamasaki T, Handa H, Yamashita J, et al. Temporal changes of suppressor T lymphocytes and cytotoxic T lymphocytes in syngeneic murine malignant gliomas. J Neurooncol. 1986;3:353–362.

    Article  CAS  Google Scholar 

  29. Yamasaki T, Kikuchi H, Yamashita J, et al. Immunoregulatory effects of interleukin 2 and interferon on syngeneic murine malignant glioma-specific cytotoxic T-lymphocytes. Cancer Res. 1988;48:2981–2987.

    CAS  PubMed  Google Scholar 

  30. Okada H, Tahara H, Shurin MR, et al. Bone marrow derived dendritic cells pulsed with a tumor specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer. 1998;78:196–201.

    Article  CAS  Google Scholar 

  31. Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumor immunity. Nat Med. 1995;1:1297–1302.

    Article  CAS  Google Scholar 

  32. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992;176: 1693–1702.

    Article  CAS  Google Scholar 

  33. Lohoff M, Ferrick D, Mittrucker HW, et al. Interferon regulatory factor-1 is required for a T helper 1 immune response in vivo. Immunity. 1997;6:681–689.

    Article  CAS  Google Scholar 

  34. Prevost-Blondel A, Zimmermann C, Stemmer C, et al. Tumor-infiltrating lymphocytes exhibiting high ex vivo cytolytic activity fail to prevent murine melanoma tumor growth in vivo. J Immunol. 1998;161:2187–2194.

    CAS  PubMed  Google Scholar 

  35. Terakawa S, Fan JH, Kumakura K, et al. Quantitative analysis of exocytosis directly visualized in living chromaffin cells. Neurosci Lett. 1991;123:82–86.

    Article  CAS  Google Scholar 

  36. Okamoto K, Mizuno M, Nakahara N, et al. Process of apoptosis induced by TNF-α in murine fibroblast Ltk-cell: continuous observation with video enhanced contrast microscopy. Apoptosis. 2002;7:77–86.

    Article  CAS  Google Scholar 

  37. Giezeman-Smits KM, Okada H, Brissette-Storkus SC, et al. Cytokine gene therapy of gliomas: Induction of reactive CD4+ T cells by interleukin-4 transfected 9L gliosarcoma is essential for protective immunity. Cancer Res. 2000;60:2449–2457.

    CAS  PubMed  Google Scholar 

  38. Yoshida J, Mizuno M, Nakahara N, et al. Antitumor effect of an experimental human glioma by adeno-associated virus vector containing the human interferon-beta gene. Jpn J Cancer Res. 2002;93:223–228.

    Article  CAS  Google Scholar 

  39. Kalinski P, Hilkens CM, Wierenga EA, et al. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. [Review]. Immunol Today. 1999;20:561–567.

    Article  CAS  Google Scholar 

  40. Vieira PL, de Jong EC, Wierenga EA, et al. Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol. 2000;164:4507–4512.

    Article  CAS  Google Scholar 

  41. Trinchieri G . Interleukin-12 and its role in the generation of TH1 cells. Immunol Today. 1993;14:335–338.

    Article  CAS  Google Scholar 

  42. Zeh HJ, Hurd S, Storkus WJ, et al. Interleukin-12 promotes the proliferation and cytolytic maturation of immune effectors: implications for the immunotherapy of cancer. J Immunother. 1993;14:155–161.

    Article  CAS  Google Scholar 

  43. Kalinski P, Schuitemaker JH, Hilkens CM, et al. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-gamma and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J Immunol. 1999;162:3231–3236.

    CAS  PubMed  Google Scholar 

  44. Dix AR, Brooks WH, Roszman TL, et al. Immune defects observed in patients with primary malignant brain tumors. [Review]. J Neuroimmunol. 1999;100:216–232.

    Article  CAS  Google Scholar 

  45. Fischer HG, Reichmann G . Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol. 2001;166:2717–2726.

    Article  CAS  Google Scholar 

  46. Okada H, Villa LA, Attanucci J, et al. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther. 2001;8:1157–1166.

    Article  CAS  Google Scholar 

  47. Nehashi K, Yoshida J, Wakabayashi T, et al. Growth inhibition of human glioma cells by superinduced human interferon-beta. Neurol Med Chir (Tokyo). 1995;35:719–722.

    Article  CAS  Google Scholar 

  48. Hirao M, Onai N, Hiroishi K, et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res. 2000;60:2209–2217.

    CAS  PubMed  Google Scholar 

  49. Cella M, Facchetti F, Lanzavecchia A, et al. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol. 2000;1:305–310.

    Article  CAS  Google Scholar 

  50. Langenkamp A, Messi M, Lanzavecchia A, et al. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol. 2000;1:311–316.

    Article  CAS  Google Scholar 

  51. Taniguchi T, Takaoka A . A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol. 2001;2:378–386.

    Article  CAS  Google Scholar 

  52. Tanaka F, Hashimoto W, Okamura H, et al. Rapid generation of potent and tumor-specific cytotoxic T lymphocytes by interleukin 18 using dendritic cells and natural killer cells. Cancer Res. 2000;60:4838–4844.

    CAS  PubMed  Google Scholar 

  53. O'Shea JJ, Visconti R . Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge. Nat Immunol. 2000;1:17–19.

    Article  CAS  Google Scholar 

  54. Weller M, Fontana A . The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. Brain Res. 1995;21:128–151.

    Article  CAS  Google Scholar 

  55. Weller RO, Blecham NM, eds. The immunopathology of brain tumours. In: “Tumours of the Brain”, Heidelberg, Tokyo, Springer; 1986; 19–33.

    Chapter  Google Scholar 

  56. Wiendl H, Mitsdoerffer M, Hofmeister V, et al. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J Immunol. 2002;168:4772–4780.

    Article  CAS  Google Scholar 

  57. Wischhusen J, Jung G, Radovanovic I, et al. Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma. Cancer Res. 2002;62:2592–2599.

    CAS  PubMed  Google Scholar 

  58. Menetrier-Caux C, Thomachot MC, Alberti L, et al. IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res. 2001;61:3096–3104.

    CAS  PubMed  Google Scholar 

  59. Santambrogio L, Belyanskaya SL, Fischer FR, et al. Developmental plasticity of CNS microglia. Proc Natl Acad Sci USA. 2001;98:6295–6300.

    Article  CAS  Google Scholar 

  60. Becher B, Prat A, Antel JP . Brain-immune connection: immuno-regulatory properties of CNS-resident cells. GLIA. 2000;29:293–304.

    Article  CAS  Google Scholar 

  61. Badie B, Schartner JM . Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery. 2000;46:957–961.

    CAS  PubMed  Google Scholar 

  62. Ford AL, Foulcher E, Lemckert FA, et al. Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med. 1996;184:1737–1745.

    Article  CAS  Google Scholar 

  63. Flugel A, Labeur MS, Grasbon-Frodl EM, et al. Microglia only weakly present glioma antigen to cytotoxic T cells. Int J Dev Neurosci. 1999;17:547–556.

    Article  CAS  Google Scholar 

  64. Becher B, Blain M, Antel JP . CD40 engagement stimulates IL-12 p70 production by human microglial cells: basis for Th1 polarization in the CNS. J Neuroimmunol. 2000;102:44–50.

    Article  CAS  Google Scholar 

  65. Lin CM, Wang FH, Lee PK . Activated human CD4+ T cells induced by dendritic cell stimulation are most sensitive to transforming growth factor-beta: implications for dendritic cell immunization against cancer. Clin Immunol. 2002;102:96–105.

    Article  CAS  Google Scholar 

  66. Okada H, Giezeman-Smits KM, Tahara H, et al. Effective cytokine gene therapy against an intracranial glioma using a retrovirally transduced IL-4 plus HSV-TK tumor vaccine. Gene Ther. 1999;6:219–226.

    Article  CAS  Google Scholar 

  67. Heimberger AB, Crotty LE, Archer GE, et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol. 2000;103:16–25.

    Article  CAS  Google Scholar 

  68. Okada H, Pollack IF, Lieberman F, et al. Gene therapy of malignant gliomas: a pilot study of vaccination with irradiated autologous glioma and dendritic cells admixed with IL-4 transduced fibroblasts to elicit an immune response. Hum Gene Ther. 2001;12:575–595.

    Article  CAS  Google Scholar 

  69. Nakahara N, Okada H, Witham TF, et al. Combination of stereotactic radiosurgery and cytokine gene-transduced tumor cell vaccination: a new strategy against metastatic brain tumors. J Neurosurg. 2001;95:984–989.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs William H Chambers, Andrea Gambotto and Paul Robbins (University of Pittsburgh) for their helpful suggestions and discussions. We also thank Toray Industry Co. for providing recombinant mouse IFN-β. This work was supported by NIH R01 NS37704, NIH/NINDS (1P01 NS40923) and a Copeland Foundation Grant from Pittsburgh Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideho Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakahara, N., Pollack, I., Storkus, W. et al. Effective induction of antiglioma cytotoxic T cells by coadministration of interferon-β gene vector and dendritic cells. Cancer Gene Ther 10, 549–558 (2003). https://doi.org/10.1038/sj.cgt.7700598

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700598

Keywords

This article is cited by

Search

Quick links