Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long-lasting gene expression by particle-mediated intramuscular transfection modified with bupivacaine: combinatorial gene therapy with IL-12 and IL-18 cDNA against rat sarcoma at a distant site

Abstract

The immune response is modulated by genetic adjuvants using plasmid vectors expressing cytokines. Skeletal muscle can express a foreign gene intramuscularly administered via a needle injection, and the potential of muscle as a target tissue for somatic gene therapy in treating cancer has been explored. In the present study, we investigated the efficacy of particle-mediated intramuscular transfection modified with a local anesthetic agent, bupivacaine, on luciferase and green fluorescent protein. The results indicate that these proteins are more efficiently expressed and persist longer in muscle modified in this way compared with the needle-injection method. Using an established rat sarcoma model, particle-mediated intramuscular gene-gun therapy with a combination of IL-12 and IL-18 cDNA was conducted. Growth of the distant sarcoma was significantly inhibited by particle-mediated intramuscular combination gene therapy, and the survival rate was also improved. Furthermore, the combination gene-gun therapy maintained significant levels of interferon-γ and induced a high activity of tumor-specific cytotoxic T lymphocytes. These results suggest that the sustained local delivery of IL-12 and IL-18 cDNA using intramuscular gene-gun therapy modified with bupivacaine can induce long-term antitumor immunity, and can provide the great advantage of inhibiting the disseminated tumor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Donnelly JJ, Ulmer JB, Shiver JW, et al. DNA vaccines. Annu Rev Immunol. 1997;15:617–648.

    Article  CAS  PubMed  Google Scholar 

  2. Agha-Mohammadi S, Lotze MT . Immunomodulation of cancer: potential use of selectively replicating agents. J Clin Invest. 2000;105:1173–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–1468.

    Article  CAS  PubMed  Google Scholar 

  4. Prud'homme GJ, Lawson BR, Chang Y, et al. Immunotherapeutic gene transfer into muscle. Trends Immunol. 2001;22:149–155.

    Article  CAS  PubMed  Google Scholar 

  5. Wells DJ . Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle. FEBS Lett. 1993;332:179–182.

    Article  CAS  PubMed  Google Scholar 

  6. Danko I, Fritz JD, Jiao S, et al. Pharmacological enhancement of in vivo foreign gene expression in muscle. Gene Therapy. 1994;1:114–121.

    CAS  PubMed  Google Scholar 

  7. Wolff JA, Ludtke JJ, Acsadi G, et al. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet. 1992;6:363–369.

    Article  Google Scholar 

  8. Cheng L, Ziegelhoffer PR, Yang NS . In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated using particle bombardment. Proc Natl Acad Sci USA. 1993;90:4455–4459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshida Y, Kobayashi E, Endo H, et al. Introduction of DNA into rat liver with a hand-held gene gun: distribution of the expressed enzyme, [32P] DNA, and Ca2+ flux. Biocem Biophys Res Commun. 1997;234:695–700.

    Article  CAS  Google Scholar 

  10. Hosoya Y, Kobayashi E, Yoshida Y, et al. Introduction of cytokine genes into rat solid neoplasms with a hand-held gene gun. Effect of IL-12 plus TNF-alpha gene transfection on subcutaneous tumor. Ann Cancer Res Ther. 1998;7:39–42.

    Article  Google Scholar 

  11. Yang NS, Sun WH . Gene gun and other non-viral approaches for cancer gene therapy. Nat Med. 1995;1:481–483.

    Article  CAS  PubMed  Google Scholar 

  12. Rakhmilevich AL, Turner J, Ford MJ, et al. Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci USA. 1996;93:6291–6296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun WH, Burkholder JK, Sun J, et al. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci USA. 1995;92:2889–2893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahvi DM, Burkholder JK, Turner J, et al. Particle-mediated gene transfer of granulocyte-macrophage colony-stimulating factor cDNA to tumor cells: implications for a clinically relevant tumor vaccine. Hum Gene Ther. 1996;7:1535–1543.

    Article  CAS  PubMed  Google Scholar 

  15. Dilloo D, Bacon K, Holden W, et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat Med. 1996;2:1090–1095.

    Article  CAS  PubMed  Google Scholar 

  16. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 1997;89:21–39.

    Article  CAS  PubMed  Google Scholar 

  17. Gilboa E . Immunotherapy of cancer with genetically modified tumor vaccines. Semin Oncol. 1996;23:101–107.

    CAS  PubMed  Google Scholar 

  18. Brunda MJ, Luistro L, Warrier RR, et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med. 1993;178:1223–1230.

    Article  CAS  PubMed  Google Scholar 

  19. Tahara H, Zhe HJ, Storkus WJ, et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res. 1994;54:182–189.

    CAS  PubMed  Google Scholar 

  20. Nastala CL, Edington HD, McKinney TG, et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol. 1994;153:1697–1706.

    CAS  PubMed  Google Scholar 

  21. Tannenbaum CS, Wicker N, Armstrong D, et al. Cytokine and chemokine expression in tumors of mice receiving systemic therapy with IL-12. J Immunol. 1996;156:693–699.

    CAS  PubMed  Google Scholar 

  22. Manetti R, Parronchi P, Giudizi MG et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med. 1993;177:1199–1204.

    Article  CAS  PubMed  Google Scholar 

  23. Hsieh CS, Macatonia SE, Tripp CS, et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260:547–549.

    Article  CAS  PubMed  Google Scholar 

  24. Martinotti A, Stoppacciaro A, Vagliani M, et al. CD4 T cells inhibit in vivo the CD8-mediated immune response against murine colon carcinoma cells transduced with interleukin-12 genes. Eur J Immunol. 1995;25:137–146.

    Article  CAS  PubMed  Google Scholar 

  25. Tsung K, Meko JB, Peplinski GR, et al. IL-12 induces T helper 1-directed antitumor response. J Immunol. 1997;158:3359–3365.

    CAS  PubMed  Google Scholar 

  26. Cui J, Shin T, Kawano T, et al. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science. 1997;278:1623–1626.

    Article  CAS  PubMed  Google Scholar 

  27. Brunda MJ, Luistro L, Hendrzak JA, et al. Role of interferon-gamma in mediating the antitumor efficacy of interleukin-12. J Immunother Emphasis Tumor Immunol. 1995;17:71–77.

    Article  CAS  PubMed  Google Scholar 

  28. Okamura H, Nagata K, Komatsu T, et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immunol. 1995;63:3966–3972.

    CAS  Google Scholar 

  29. Okamura H, Tsutsui H, Komatsu T, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. 1995;378:88–91.

    Article  CAS  PubMed  Google Scholar 

  30. Kohno K, Kataoka J, Ohtsuki T, et al. IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells[,] and exerts its effect independently of IL-12. J Immunol. 1997;158:1541–1550.

    CAS  PubMed  Google Scholar 

  31. Ushio S, Namba M, Okura T, et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol. 1996;156:4274–4279.

    CAS  PubMed  Google Scholar 

  32. Micallef MJ, Ohtsuki T, Kohno K, et al. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. Eur J Immunol. 1996;26:1647–1651.

    Article  CAS  PubMed  Google Scholar 

  33. Dao T, Ohashi K, Kayano T, et al. Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol. 1996;173:230–235.

    Article  CAS  PubMed  Google Scholar 

  34. Tsutsui H, Nakanishi K, Matsui K, et al. IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol. 1996;157:3967–3973.

    CAS  PubMed  Google Scholar 

  35. Dao T, Mehal WZ, Crispe IN . IL-18 augments perforin-dependent cytotoxicity of liver NK-T cells. J Immunol. 1998;161:2217–2222.

    CAS  PubMed  Google Scholar 

  36. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386:619–623.

    Article  CAS  PubMed  Google Scholar 

  37. Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science. 1997;275:206–209.

    Article  CAS  PubMed  Google Scholar 

  38. Ahn HJ, Maruo S, Tomura M, et al. A mechanism underlying synergy between IL-12 and IFN-gamma-inducing factor in enhanced production of IFN-gamma. J Immunol. 1997;159:2125–2131.

    CAS  PubMed  Google Scholar 

  39. Osaki T, Peron JM, Cai Q, et al. IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma- and IL-12-independent antitumor effects. J Immunol. 1998;160:1742–1749.

    CAS  PubMed  Google Scholar 

  40. Coughlin CM, Salhany KE, Wysocka M, et al. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest. 1998;101:1441–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oshikawa K, Shi F, Rakhmilevich AL, et al. Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1beta converting enzyme cDNA. Proc Natl Acad Sci USA. 1999;96:13351–13356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gately MK, Warrier RR, Honasoge S, et al. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-gamma in vivo. Int Immunol. 1994;6:157–167.

    Article  CAS  PubMed  Google Scholar 

  43. Orange JS, Salazar-Mather TP, Opal SM, et al. Mechanism of interleukin 12-mediated toxicities during experimental viral infections: role of tumor necrosis factor and glucocorticoids. J Exp Med. 1995;181:901–914.

    Article  CAS  PubMed  Google Scholar 

  44. Yamasaki M, Hashiguchi N, Tsukamoto T, et al. Variant form of green and blue fluorescent proteins adapted for use in mammalian cells. Bioimages. 1998;6:1–7.

    CAS  Google Scholar 

  45. Wang J, Murakami T, Hakamata Y, et al. Gene gun-mediated oral mucosal transfer of interleukin 12 cDNA coupled with an irradiated melanoma vaccine in a hamster model: Successful treatment of oral melanoma and distant skin lesion. Cancer Gene Ther. 2001;8:705–712.

    Article  CAS  PubMed  Google Scholar 

  46. Murakami T, Hirai H, Suzuki T, et al. HTLV-1 Tax enhances NF-kappa B2 expression and binds to the products p52 and p100, but does not suppress the inhibitory function of p100. Virology. 1995;206:1066–1074.

    Article  CAS  PubMed  Google Scholar 

  47. Benoit PW, Belt WD . Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (Marcaine). J Anat. 1970;107:547–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Seale P, Asakura A, Rudnicki MA . The potential of muscle stem cells. Dev Cell. 2001;1:333–342.

    Article  CAS  PubMed  Google Scholar 

  49. Alameddine HS, Hantai D, Dehaupas M, et al. Role of persisting basement membrane in the reorganization of myofibres originating from myogenic cell grafts in the rat. Neuromuscul Disord. 1991;1:143–152.

    Article  CAS  PubMed  Google Scholar 

  50. Hanna E, Zhang X, Woodlis J, et al. Intramuscular electroporation delivery of IL-12 gene for treatment of squamous cell carcinoma located at distant site. Cancer Gene Ther. 2001;8:151–157.

    Article  CAS  PubMed  Google Scholar 

  51. Li S, Zhang X, Xia X, et al. Intramuscular electropora-tion delivery of IFN-alpha gene therapy for inhibition of tumor growth located at a distant site. Gene Ther. 2001;8:400–407.

    Article  CAS  PubMed  Google Scholar 

  52. Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827–845.

    Article  CAS  PubMed  Google Scholar 

  53. D'Andrea A, Rengaraju M, Valiante NM, et al. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med. 1992;176:1387–1398.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr T Osumi (Himeji Institute of Technology, Hyogo, Japan) for donating a GFP plasmid, phGFP-105-C1; Dr S Wolf (the Genetic Institute, Cambridge, MA) for donating a murine IL-12 expression plasmid, pCAGGS-IL-12, Dr K Oshikawa (Jichi Medical School, Tochigi, Japan) for donating mouse pro-IL-18 and ICE plasmids), and Dr Y Matsumoto (Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan) for donating the OX35 and OX8 hybridoma cells. We greatly appreciate the skillful technical assistance of Ms Kyoko Okamoto and Ms Noriko Hayashi. This work was supported by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Murakami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajiki, T., Murakami, T., Kobayashi, Y. et al. Long-lasting gene expression by particle-mediated intramuscular transfection modified with bupivacaine: combinatorial gene therapy with IL-12 and IL-18 cDNA against rat sarcoma at a distant site. Cancer Gene Ther 10, 318–329 (2003). https://doi.org/10.1038/sj.cgt.7700575

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700575

Keywords

This article is cited by

Search

Quick links