Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced antitumor effects of a bicistronic adenovirus vector expressing both herpes simplex virus thymidine kinase and monocyte chemoattractant protein-1 against hepatocellular carcinoma

An Erratum to this article was published on 21 July 2003

Abstract

The efficacy of the suicide gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) system for the treatment of cancer is limited because of the insufficient gene transfer and the low killing activity. To enhance the antitumor activity, we determined whether recombinant adenovirus vector (rAd)s expressing both HSV-tk and monocyte chemoattractant protein-1 (MCP-1) genes could potentiate the destruction of hepatocellular carcinoma (HCC). The rAd Ad-tk-MCP1 harboring HSV-tk and MCP-1 genes in sequence under the universal CAG promoter was constructed with a bicistronic unit including the encephalomyocarditis virus-internal ribosomal entry site. The levels of HSV-tk expression and GCV-sensitive tumoricidal activity of Ad-tk-MCP1 were comparable to those of rAd expressing HSV-tk alone. The growth of subcutaneous tumors in athymic nude mice was markedly suppressed when tumors were treated with Ad-tk-MCP1 as opposed to another bicistronic vector Ad-MCP1-tk, rAd expressing either HSV-tk or MCP-1, or both of these vectors. The antitumor effects of Ad-tkMCP1 may be dependent on the activation of macrophages, since the recruitment of macrophages was observed tumor necrosis factor-α production was enhanced in the tumor tissue. Furthermore, the enhanced antitumor effect was abolished by inactivating macrophages with carrageenan treatment. These results demonstrated that a bicistronic rAd harboring both suicide and chemokine genes in sequence exerted the enhanced, macrophage-dependent, antitumor effects in a model of HCC and support the use of this strategy for the treatment of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Venook AP . Treatment of hepatocellular carcinoma: too many options? J Clin Oncol. 1994;12:1323–1334.

    Article  CAS  Google Scholar 

  2. Trinchet JC, Beaugrand M . Treatment of hepatocellular carcinoma in patients with cirrhosis. J Hepatol. 1997;27:756–765.

    Article  CAS  Google Scholar 

  3. Bruix J . Treatment of hepatocellular carcinoma. Hepatology. 1997;25:259–262.

    Article  CAS  Google Scholar 

  4. Colombo M . Treatment of hepatocellular carcinoma. J Viral Hepatol. 1997;4:125–130.

    Article  Google Scholar 

  5. Kanai F, Shiratori Y, Yoshida Y, et al. Gene therapy for alpha-fetoprotein-producing human hepatoma cells by adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Hepatology. 1996;23:1359–1368.

    CAS  PubMed  Google Scholar 

  6. Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vectro-producer cells for treatment of experimental brain tumors [see comments]. Science. 1992;256:1550–1552.

    Article  CAS  Google Scholar 

  7. Kaneko S, Hallenbeck P, Kotani T, et al. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res. 1995;55:5283–5287.

    CAS  PubMed  Google Scholar 

  8. Cao G, Kuriyama S, Du P, et al. Construction of retroviral vectors to induce strong hepatoma cell-specific expression of cytokine genes. J Gastroenterol Hepatol. 1996;11:1053–1061.

    Article  CAS  Google Scholar 

  9. Qin XQ, Tao N, Dergay A, et al. Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc Natl Acad Sci USA. 1998;95:14411–14416.

    Article  CAS  Google Scholar 

  10. Fricker J . Hepatocellular carcinoma and p53 gene therapy [news]. Mol Med Today. 1996;2:361.

    Article  CAS  Google Scholar 

  11. Anderson SC, Johnson DE, Harris MP, et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin. Cancer Res. 1998;4:1649–1659.

    CAS  PubMed  Google Scholar 

  12. Bookstein R, Demers W, Gregory R, et al. p53 gene therapy in vivo of herpatocellular and liver metastatic colorectal cancer. Semin Oncol. 1996;23:66–77.

    CAS  PubMed  Google Scholar 

  13. Sakai Y, Kaneko S, Nakamoto Y, et al. Enhanced anti-tumor effects of herpes simplex thymidine kinase/ganciclovir system by codelivering monocyte chemoattractant protein-1 in hepatocellular carcinoma. Carcer Gene Ther. 2001;8:695–704.

    Article  CAS  Google Scholar 

  14. Elshami AA, Saavedra A, Zhang H, et al. Gap junctions play a role in the ‘bystander effect’ of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther. 1996;3:85–92.

    CAS  Google Scholar 

  15. Kianmanesh AR, Perrin H, Panis Y, et al. A ‘distant’ bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum Gene Ther. 1997;8:1807–1814.

    Article  CAS  Google Scholar 

  16. Freeman SM, Abbound CN, Whartenby KA et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993;53:5274–5283.

    CAS  Google Scholar 

  17. Matsushima K, Larsen CG, DuBois GC, et al. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989;169:1485–1490.

    Article  CAS  Google Scholar 

  18. Sakai Y, Kaneko S, Sato Y, et al. Gene therapy for hepatocellular carcinoma using two recombinant adenovirus vectors with alpha-fetoprotein promoter and Cre/lox P system. J Virol Methods. 2001;92:5–17.

    Article  CAS  Google Scholar 

  19. Emerman M, Temin HM . Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell. 1984; 39:459–467.

    Article  CAS  Google Scholar 

  20. Cullen BR, Lomedico PT, Ju G . Transcriptional interference in avian retroviruses — implications for the promoter insertion model of leukaemogenesis. Nature. 1984;307:241–245.

    Article  CAS  Google Scholar 

  21. Miyake S, Makimura M, Kanegae Y, et al. Efficient generation of recombinant adenoviruses using adenovirus DNA–terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA. 1996;93:1320–1324.

    Article  CAS  Google Scholar 

  22. Sato Y, Tanaka K, Lee G, et al. Enhanced and specific gene expression via tissue-specific production of Cre recombinase using adenovirus vector. Biochem Biophys Res Commun. 1998;244:455–462.

    Article  CAS  Google Scholar 

  23. Kanegae Y, Makimura M, Saito I . A simple and efficient method for purification of infectious recombinant adenovirus. Jpn J Med Sci Biol. 1994;47:157–166.

    Article  CAS  Google Scholar 

  24. Nakabayashi H, Taketa K, Yamane T, et al. Phenotypical stability of a human hepatoma cell line, HuH-7, in long-term culture with chemically defined medium. Gann. 1984;75:151–158.

    CAS  PubMed  Google Scholar 

  25. Ko Y, Mukaida N, Panyutich A, et al. A Sensitive enzyme-linked immunosorbent assay for human interleukin-8. J Immunol Methods, 1992;149:227–235.

    Article  CAS  Google Scholar 

  26. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantitation of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72:248–254.

    Article  CAS  Google Scholar 

  27. Ives DH, Wang SM . Deoxycytidine kinase from calf thymus. In: Hoffe PA, Jones ME, eds Methods Enzymology: Purine and Pyrimidine Nucleotide Metabolism. New York: Academic Press; 1978:337–345.

    Chapter  Google Scholar 

  28. Ando K, Moriyama T, Guidotti LG, et al. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J Exp Med. 1993;178:1541–1554.

    Article  CAS  Google Scholar 

  29. Suderkoetter C, Steinbrink K, Goebeler R, et al. Macrophage and angiogenesis. J Leukocyte Biol. 1994;55:410–422.

    Article  Google Scholar 

  30. Emerman M, Temin HM . Quantitive analysis of gene suppression in integrated retrovirus vectors. Mol Cell Biol. 1986;6:792–800.

    Article  CAS  Google Scholar 

  31. Mizuguchi H, Xu Z, Ishii-Watabe A, et al. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther. 2000;4:376–382.

    Article  Google Scholar 

  32. Sharma S, Miller PW, Stolina M, et al. Multicomponent gene therapy vaccines for lung cancer. Effective eradication of established murine tumors in vivo with interleukin-7/herpes simplex thymidine kinase-transduced autologus tumor and ex vivo activated dendritic cells. Gene Ther. 1997;4:1361–1370.

    Article  CAS  Google Scholar 

  33. Pizzato M, Franchin E, Calvi P, et al. Production and characterization of a bicistronic Moloney-based retroviral vector expression human interleukin 2 and herpes simplex thymidine kinase for gene therapy of cancer. Gene Ther. 1998;5:1003–1007.

    Article  CAS  Google Scholar 

  34. Okada H, Giezaman-Smits KM, Tahara H, et al. Effective cytokine gene therapy against an intracranial glioma using a retrovially transduced IL-4 plus HSVtk tumor vaccine. Gene Ther. 1999;6:219–226.

    Article  CAS  Google Scholar 

  35. Okada H, Miyamura K, Iyoh T, et al. Gene therapy against an experimental glioma using adeno-associated virus vectors. Gene Ther. 1996;3:957–964.

    CAS  PubMed  Google Scholar 

  36. Chadha KC, Munyon W . Presence of herpes simplex virus-related antigens in transformed L cells. J Virol. 1975;15: 1475–1486.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jamieson AT, Macnab JC, Perbal B, et al. Virus specified enzyme activity and RNA species in herpes simplex virus type 1 transformed mouse cells. J Gen Virol. 1976;32:493–508.

    Article  CAS  Google Scholar 

  38. Klessig DF, Quinlan MP, Grodzicker T . Proteins containing only half of the coding information of early regions 1b of adenovirus are functional in human cells transformed with the herpes simplex virus type 1 thymidine kinase gene and adenovirus type 2 DNA. J Virol. 1982;41:423–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang S, Singh RK, Xie K, et al. Expression of the JE/MCP-1 gene suppresses metastatic potential in murine colon carcinoma cells. Cancer Immunol Immunother. 1994;39:231–238.

    Article  CAS  Google Scholar 

  40. Rollins BJ, Sunday ME . Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol Cell Biol. 1991;11:3125–3131.

    Article  CAS  Google Scholar 

  41. Nokihara H, Yanagawa H, Nishioka Y, et al. Natural killer cell-dependent suppression of systemic spread of human lung adenocarcinoma cells by monocyte chemoattractant protein-1 gene transfection in severe combined immunodeficient mice. Cancer Res. 2000;60:7002–7007.

    CAS  PubMed  Google Scholar 

  42. Nakashima E, Mukaida N, Kubota Y, et al. Human MCAF gene transfer enhances the metastatic capacity of a mouse cachectic adenocarcinoma cell line in vivo. Pharm Res. 1995;12:1598–1604.

    Article  CAS  Google Scholar 

  43. Ueno T, Toi M, Saji H, et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000;6:3282–3289.

    CAS  PubMed  Google Scholar 

  44. Nesbit M, Schaider H, Miller TH, et al. Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol. 2001;166:6483–6490.

    Article  CAS  Google Scholar 

  45. Vile RG, Castleden S, Marshall J, et al. Generation of an anti-tumor immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer. 1997;71:267–274.

    Article  CAS  Google Scholar 

  46. Ramesh R, Marrogi AJ, Munshi A, et al. In vivo analysis of the ‘bystander effect’: a cytokine cascade. Exp Hematol. 1996;24:829–838.

    CAS  PubMed  Google Scholar 

  47. Murray HW, Hariprashad J, Aguero B, et al. Antimicrobial response of a T cell-deficient host to cytokine therapy: effect of interferon-gamma in experimental visceral leishmaniasis in nude mice. J Infect Dis. 1995;171:1309–1316.

    Article  CAS  Google Scholar 

  48. Freund CT, Sutton MA, Dang T, et al. Adenovirus-mediated combination suicide and cytokine gene therapy for bladder cancer. Anticancer Res. 2000;20:1359–1366.

    CAS  Google Scholar 

  49. Pulkkanen KJ, Parkkinen JJ, Laukkanen JM, et al. HSV-tk gene therapy for human renal cell carcinoma in nude mice. Cancer Gene Ther. 2001;7:529–536.

    Article  Google Scholar 

  50. Sato M, Watanabe Y, Ueda S, et al. Microwave coagulation therapy for hepatocellular carcinoma. Gastroenterology. 1996;110:1507–1514.

    Article  CAS  Google Scholar 

  51. Jiao LR . Percutaneous radiofrequency thermal ablation for liver tumours [letter]. Lancet. 1999;354:427–428.

    Article  CAS  Google Scholar 

  52. Marshall E . Gene therapy death prompts review of adenovirus vector [news]. Science. 1999;286:2244–2245.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Kaneko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchiyama, T., Kaneko, S., Nakamoto, Y. et al. Enhanced antitumor effects of a bicistronic adenovirus vector expressing both herpes simplex virus thymidine kinase and monocyte chemoattractant protein-1 against hepatocellular carcinoma. Cancer Gene Ther 10, 260–269 (2003). https://doi.org/10.1038/sj.cgt.7700571

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700571

Keywords

This article is cited by

Search

Quick links