Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Oncolytic herpes simplex virus vectors for cancer virotherapy

Abstract

Oncolytic herpes simplex virus type 1 (HSV-1) vectors are emerging as an effective and powerful therapeutic approach for cancer. Replication-competent HSV-1 vectors with mutations in genes that affect viral replication, neuropathogenicity, and immune evasiveness have been developed and tested for their safety and efficacy in a variety of mouse models. Evidence to-date following administration into the brain attests to their safety, an important observation in light of the neuropathogenicity of the virus. Phase I clinical traits of three vectors, G207, 1716, and NV1020, are either ongoing or completed, with no adverse events attributed to the virus. These and other HSV-1 vectors are effective against a myriad of solid tumors in mice, including glioma, melanoma, breast, prostate, colon, ovarian, and pancreatic cancer. Enhancement of activity was observed when HSV-1 vectors were used in combination with traditional therapies such as radiotherapy and chemotherapy, providing an attractive strategy to pursue in the clinic. Oncolytic HSV-1 vectors expressing “suicide” genes (thymidine kinase, cytosine deaminase, rat cytochrome P450) or immunostimulatory genes (IL-12, GM-CSF, etc.) have been constructed to maximize tumor destruction through multimodal therapeutic mechanisms. Further advances in virus delivery and tumor specificity should improve the likelihood for successful translation to the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Martuza RL, Malick A, Markert JM et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant Science 1991 252: 854–856

    Article  CAS  PubMed  Google Scholar 

  2. Markert JM, Medlock MD, Rabkin SD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial Gene Ther 2000 7: 867–874

    CAS  PubMed  Google Scholar 

  3. Rampling R, Cruickshank G, Papanastassiou V et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma [see comments] Gene Ther 2000 7: 859–866

    CAS  PubMed  Google Scholar 

  4. Fong Y, Kemeny N, Jarnagin W et al. Phase 1 study of a replication-competent herpes simplex oncolytic virus for treatment of hepatic colorectal metastases Am Soc Clin Oncol Ann Meeting 2002 27

  5. Roizman B . The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors Proc Natl Acad Sci USA 1996 93: 11307–11312

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishiyama Y . Herpesvirus genes: molecular basis of viral replication and pathogenicity Nagoya J Med Sci 1996 59: 107–119

    CAS  PubMed  Google Scholar 

  7. Rabkin SD, Hernaiz Driever P . Replication-competent herpes simplex virus vectors for cancer therapy In: Rabkin SD, Hernaiz Driever P, eds Replication-Competent Viruses for Cancer Therapy Monographs in Virology Basel: Karger 2001 vol. 22: 1–45

    Google Scholar 

  8. Balfour HH Jr . Antiviral drugs N Engl J Med 1999 340: 1255–1268

    CAS  PubMed  Google Scholar 

  9. Mellerick DM, Fraser NW . Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state Virology 1987 158: 265–275

    CAS  PubMed  Google Scholar 

  10. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: biological principles, risk management and future directions Nat Med 2001 7: 781–787

    CAS  PubMed  Google Scholar 

  11. Kaplitt MG, Tjuvajev JG, Leib DA et al. Mutant herpes simplex virus induced regression of tumors growing in immunocompetent rats J Neuro-Oncol 1994 19: 137–147

    CAS  Google Scholar 

  12. Goldstein DJ, Weller SK . Factor(s) present in herpes simplex virus type 1–infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant Virology 1988 166: 41–51

    CAS  PubMed  Google Scholar 

  13. Pyles RB, Thompson RL . Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system J Virol 1994 68: 4963–4972

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang ZY, Tenser RB, Rapp F . Hepatic infection by thymidine kinase–positive and thymidine kinase–negative herpes simplex virus after partial hepatectomy Infect Immun 1983 42: 402–408

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen SH, Cook WJ, Grove KL et al. Human thymidine kinase can functionally replace herpes simplex virus type 1 thymidine kinase for viral replication in mouse sensory ganglia and reactivation from latency upon explant J Virol 1998 72: 6710–6715

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Petrowsky H, Roberts GD, Kooby DA et al. Functional interaction between fluorodeoxyuridine-induced cellular alterations and replication of a ribonucleotide reductase–negative herpes simplex virus J Virol 2001 75: 7050–7058

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoon SS, Nakamura H, Carroll NM et al. An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma FASEB J 2000 14: 301–311

    CAS  PubMed  Google Scholar 

  18. Fan H, Villegas C, Wright JA . Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential Proc Natl Acad Sci USA 1996 93: 14036–14040

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldstein DJ, Weller SK . Herpes simplex virus type 1–induced ribonucleotide reductase activity is dispensible for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant J Virol 1988 62: 196–205

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cameron JM, McDougall I, Marsden HS et al. Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target J Gen Virol 1988 69: 2607–2612

    CAS  PubMed  Google Scholar 

  21. Yamada Y, Kimura H, Morishima T et al. The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex virus type 1 in mice J Infect Dis 1991 164: 1091–1097

    CAS  PubMed  Google Scholar 

  22. Spector T, Averett DR, Nelson DJ et al. Potentiation of antiherpetic activity of acyclovir by ribonucleotide reductase inhibition Proc Natl Acad Sci USA 1985 82: 4254–4257

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Coen DM, Goldstein DJ, Weller SK . Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir Antimicrob Agents Chemother 1989 33: 1395–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase–deficient herpes simplex viral mutant Cancer Res 1994 54: 3963–3966

    CAS  PubMed  Google Scholar 

  25. Boviatsis EJ, Park JS, Sena-Esteves M et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene Cancer Res 1994 54: 5745–5751

    CAS  PubMed  Google Scholar 

  26. Thompson RL, Wagner EK, Stevens JG . Physical location of a herpes simplex virus type-1 gene function(s) specifically associated with a 10 million–fold increase in HSV neurovirulence Virology 1983 131: 180–192

    CAS  PubMed  Google Scholar 

  27. Chou J, Kern ER, Whitley RJ et al. Mapping of herpes simplex virus-1 neurovirulence to gamma 34.5, a gene nonessential for growth in culture Science 1990 250: 1262–1266

    CAS  PubMed  Google Scholar 

  28. Chou J, Roizman B . The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells Proc Natl Acad Sci USA 1992 89: 3266–3270

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Robertson LM, MacLean AR, Brown SM . Peripheral replication and latency reactivation kinetics of the non-neurovirulent herpes simplex virus type 1 variant 1716 J Gen Virol 1992 73: 967–970

    PubMed  Google Scholar 

  30. Whitley RJ, Kern ER, Chatterjee S et al. Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodent models J Clin Invest 1993 91: 2837–2843

    CAS  PubMed  PubMed Central  Google Scholar 

  31. MacLean AR, ul-Fareed M, Robertson L et al. Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the “a” sequence J Gen Virol 1991 72: 631–639

    CAS  PubMed  Google Scholar 

  32. McKie EA, MacLean AR, Lewis AD et al. Selective in vitro replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants in primary human CNS tumours — evaluation of a potentially effective clinical therapy Br J Cancer 1996 74: 745–752

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Todo T, Martuza RL, Rabkin SD et al. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing Proc Natl Acad Sci USA 2001 98: 6396–6401

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Meignier B, Longnecker R, Roizman B . In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents J Infect Dis 1988 158: 602–614

    CAS  PubMed  Google Scholar 

  35. Wong RJ, Kim SH, Joe JK et al. Effective treatment of head and neck squamous cell carcinoma by an oncolytic herpes simplex virus J Am Coll Surg 2001 193: 12–21

    CAS  PubMed  Google Scholar 

  36. Meignier B, Martin B, Whitley RJ et al. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus) J Infect Dis 1990 162: 313–321

    CAS  PubMed  Google Scholar 

  37. Advani SJ, Chung SM, Yan SY et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors Cancer Res 1999 59: 2055–2058

    CAS  PubMed  Google Scholar 

  38. Mineta T, Rabkin SD, Yazaki T et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas Nat Med 1995 1: 938–943

    CAS  PubMed  Google Scholar 

  39. Toda M, Rabkin SD, Martuza RL . Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1 Hum Gene Ther 1998 9: 2177–2185

    CAS  PubMed  Google Scholar 

  40. Todo T, Ebright MI, Fong Y et al. Oncolytic herpes simplex virus (G207) therapy: from basic to clinical In: Maruta H, ed Tumor-Suppressing Viruses, Genes, and Drugs San Diego: Academic Press 2002 45–75

    Google Scholar 

  41. Cozzi PJ, Malhotra S, McAuliffe P et al. Intravesical oncolytic viral therapy using attenuated, replication-competent herpes simplex viruses G207 and NV1020 is effective in the treatment of bladder cancer in an orthotopic syngeneic model FASEB J 2001 15: 1306–1308

    CAS  PubMed  Google Scholar 

  42. Delman KA, Bennett JJ, Zager JS et al. Effects of preexisting immunity on the response to herpes simplex–based oncolytic viral therapy Hum Gene Ther 2000 11: 2465–2472

    CAS  PubMed  Google Scholar 

  43. Toda M, Rabkin SD, Kojima H et al. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity Hum Gene Ther 1999 10: 385–393

    CAS  PubMed  Google Scholar 

  44. Sundaresan P, Hunter WD, Martuza RL et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice J Virol 2000 74: 3832–3841

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Varghese S, Newsome JT, Rabkin SD et al. Preclinical safety evaluation of G207, a replication-competent herpes simplex virus type 1, inoculated intraprostatically in mice and nonhuman primates Hum Gene Ther 2001 12: 999–1010

    CAS  PubMed  Google Scholar 

  46. Mashour GA, Moulding HD, Chahlavi A et al. Therapeutic efficacy of G207 in a novel peripheral nerve sheath tumor model Exp Neurol 2001 169: 64–71

    CAS  PubMed  Google Scholar 

  47. Hunter WD, Martuza RL, Feigenbaum F et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates J Virol 1999 73: 6319–6326

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoon SS, Carroll NM, Chiocca EA et al. Influence of p53 on herpes simplex virus type 1 vectors for cancer gene therapy J Gastrointest Surg 1999 3: 34–48

    CAS  PubMed  Google Scholar 

  49. Coukos G, Makrigiannakis A, Kang EH et al. Oncolytic herpes simplex virus-1 lacking ICP34.5 induces p53-independent death and is efficacious against chemotherapy-resistant ovarian cancer Clin Cancer Res 2000 6: 3342–3353

    CAS  PubMed  Google Scholar 

  50. Chahlavi A, Todo T, Martuza RL et al. Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma Neoplasia 1999 1: 162–169

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Toyoizumi T, Mick R, Abbas AE et al. Combined therapy with chemotherapeutic agents and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer Hum Gene Ther 1999 10: 3013–3029

    CAS  PubMed  Google Scholar 

  52. Advani SJ, Sibley GS, Song PY et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors Gene Ther 1998 5: 160–165

    CAS  PubMed  Google Scholar 

  53. Bradley JD, Kataoka Y, Advani S et al. Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus Clin Cancer Res 1999 5: 1517–1522

    CAS  PubMed  Google Scholar 

  54. Chung SM, Advani SJ, Bradley JD et al. The use of a genetically engineered herpes simplex virus (R7020) with ionizing radiation for experimental hepatoma Gene Ther 2002 9: 75–80

    CAS  PubMed  Google Scholar 

  55. Blank SV, Rubin SC, Coukos G et al. Replication-selective herpes simplex virus type 1 mutant therapy of cervical cancer is enhanced by low-dose radiation Hum Gene Ther 2002 13: 627–639

    CAS  PubMed  Google Scholar 

  56. Heise C, Sampson-Johannes A, Williams A et al. ONYX-015, an E1B gene–attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents Nat Med 1997 3: 639–645

    CAS  PubMed  Google Scholar 

  57. Khuri FR, Nemunaitis J, Ganly I et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer Nat Med 2000 6: 879–885

    CAS  PubMed  Google Scholar 

  58. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 2001 8: 89–98

    CAS  PubMed  Google Scholar 

  59. Jorgensen TJ, Katz S, Wittmack EK et al. Ionizing radiation does not alter the antitumor activity of herpes simplex virus vector G207 in subcutaneous tumor models of human and murine prostate cancer Neoplasia 2001 3: 451–456

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rogulski KR, Freytag SO, Zhang K et al. In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy Cancer Res 2000 60: 1193–1196

    CAS  PubMed  Google Scholar 

  61. Springer CJ, Niculescu-Duvaz I . Prodrug-activating systems in suicide gene therapy J Clin Invest 2000 105: 1161–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kramm CM, Rainov NG, Sena-Esteves M et al. Long-term survival in a rodent model of disseminated brain tumors by combined intrathecal delivery of herpes vectors and ganciclovir treatment Hum Gene Ther 1996 7: 1989–1994

    CAS  PubMed  Google Scholar 

  63. Miyatake S, Martuza RL, Rabkin SD . Defective herpes simplex virus vectors expressing thymidine kinase for the treatment of malignant glioma Cancer Gene Ther 1997 4: 222–228

    CAS  PubMed  Google Scholar 

  64. Yoon SS, Carroll NM, Chiocca EA et al. Cancer gene therapy using a replication-competent herpes simplex virus type 1 vector Ann Surg 1998 228: 366–374

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Aghi M, Chou TC, Suling K et al. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies Cancer Res 1999 59: 3861–3865

    CAS  PubMed  Google Scholar 

  66. Todo T, Rabkin SD, Martuza RL . Evaluation of ganciclovir-mediated enhancement of the antitumoral effect in oncolytic, multimutated herpes simplex virus type 1 (G207) therapy of brain tumors Cancer Gene Ther 2000 7: 939–946

    CAS  PubMed  Google Scholar 

  67. Chase M, Chung RY, Chiocca EA . An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy Nat Biotechnol 1998 16: 444–448

    CAS  PubMed  Google Scholar 

  68. Nakamura H, Mullen JT, Chandrasekhar S et al. Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil Cancer Res 2001 61: 5447–5452

    CAS  PubMed  Google Scholar 

  69. Pawlik TM, Nakamura H, Yoon SS et al. Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a replication-competent, genetically engineered herpesvirus Cancer Res 2000 60: 2790–2795

    CAS  PubMed  Google Scholar 

  70. Todo T, Rabkin SD, Sundaresan P et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus Hum Gene Ther 1999 10: 2741–2755

    CAS  PubMed  Google Scholar 

  71. Carew JF, Kooby DA, Halterman MW et al. A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes Mol Ther 2001 4: 250–256

    CAS  PubMed  Google Scholar 

  72. Toda M, Martuza RL, Kojima H et al. In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systemic antitumor activity J Immunol 1998 160: 4457–4464

    CAS  PubMed  Google Scholar 

  73. Todo T, Martuza RL, Dallman MJ et al. In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity Cancer Res 2001 61: 153–161

    CAS  PubMed  Google Scholar 

  74. Wong RJ, Patel SG, Kim S et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma Hum Gene Ther 2001 12: 253–265

    CAS  PubMed  Google Scholar 

  75. Bennett JJ, Malhotra S, Wong RJ et al. Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer Ann Surg 2001 233: 819–826

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Parker JN, Gillespie GY, Love CE et al. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors Proc Natl Acad Sci USA 2000 97: 2208–2213

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mohr I, Gluzman Y . A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function EMBO J 1996 15: 4759–4766

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Taneja S, MacGregor J, Markus S et al. Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells Proc Natl Acad Sci USA 2001 98: 8804–8808

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Miyatake S, Iyer A, Martuza RL et al. Transcriptional targeting of herpes simplex virus for cell-specific replication J Virol 1997 71: 5124–5132

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chung RY, Saeki Y, Chiocca EA . B-myb promoter retargeting of herpes simplex virus gamma 34.5 gene–mediated virulence toward tumor and cycling cells J Virol 1999 73: 7556–7564

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakamura H, Kasuya H, Mullen JT et al. Regulation of herpes simplex virus gamma (1)34.5 expression and oncolysis of diffuse liver metastases by Myb34.5 J Clin Invest 2002 109: 871–882

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Miyatake SI, Tani S, Feigenbaum F et al. Hepatoma-specific antitumor activity of an albumin enhancer/promoter regulated herpes simplex virus in vivo Gene Ther 1999 6: 564–572

    CAS  PubMed  Google Scholar 

  83. Yamamura H, Hashio M, Noguchi M et al. Identification of the transcriptional regulatory sequences of human calponin promoter and their use in targeting a conditionally replicating herpes vector to malignant human soft tissue and bone tumors Cancer Res 2001 61: 3969–3977

    CAS  PubMed  Google Scholar 

  84. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy Nat Biotechnol 2000 18: 723–727

    CAS  PubMed  Google Scholar 

  85. Rodriguez R, Schuur ER, Lim HY et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells Cancer Res 1997 57: 2559–2563

    CAS  PubMed  Google Scholar 

  86. Chen Y, DeWeese T, Dilley J et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity Cancer Res 2001 61: 5453–5460

    CAS  PubMed  Google Scholar 

  87. Yu DC, Chen Y, Dilley J et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel Cancer Res 2001 61: 517–525

    CAS  PubMed  Google Scholar 

  88. Li Y, Yu DC, Chen Y et al. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin Cancer Res 2001 61: 6428–6436

    CAS  PubMed  Google Scholar 

  89. Papanastassiou V, Rampling R, Fraser M et al. The potential for efficacy of the modified ICP 34.5 herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study Gene Ther 2002 9: 398–406

    CAS  PubMed  Google Scholar 

  90. MacKie RM, Stewart B, Brown SM . Intralesional injection of herpes simplex virus 1716 in metastatic melanoma Lancet 2001 357: 525–526

    CAS  PubMed  Google Scholar 

  91. Anderson WF . The current status of clinical gene therapy Hum Gene Ther 2002 13: 1261–1262

    CAS  PubMed  Google Scholar 

  92. Walker JR, McGeagh KG, Sundaresan P et al. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207 Hum Gene Ther 1999 10: 2237–2243

    CAS  PubMed  Google Scholar 

  93. Ikeda K, Ichikawa T, Wakimoto H et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses Nat Med 1999 5: 881–887

    CAS  PubMed  Google Scholar 

  94. Wong RJ, Joe JK, Kim SH et al. Oncolytic herpesvirus effectively treats murine squamous cell carcinoma and spreads by natural lymphatics to treat sites of lymphatic metastases Hum Gene Ther 2002 13: 1213–1223

    CAS  PubMed  Google Scholar 

  95. Coukos G, Makrigiannakis A, Montas S et al. Multi-attenuated herpes simplex virus-1 mutant G207 exerts cytotoxicity against epithelial ovarian cancer but not normal mesothelium and is suitable for intraperitoneal oncolytic therapy Cancer Gene Ther 2000 7: 275–283

    CAS  PubMed  Google Scholar 

  96. Kooby DA, Carew JF, Halterman MW et al. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207) FASEB J 1999 13: 1325–1334

    CAS  PubMed  Google Scholar 

  97. Habib NA, Sarraf CE, Mitry RR et al. E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors Hum Gene Ther 2001 12: 219–226

    CAS  PubMed  Google Scholar 

  98. DeWeese TL, van der Poel H, Li S et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy Cancer Res 2001 61: 7464–7472

    CAS  PubMed  Google Scholar 

  99. Coukos G, Makrigiannakis A, Kang EH et al. Use of carrier cells to deliver a replication-selective herpes simplex virus-1 mutant for the intraperitoneal therapy of epithelial ovarian cancer Clin Cancer Res 1999 5: 1523–1537

    CAS  PubMed  Google Scholar 

  100. Yeung S, Tufaro F, Qiang D et al. Dextran sulfate enhances the systemic delivery of oncolytic herpes simplex virus for treatment of colorectal cancer Mol Ther 2001 3: S390

    Google Scholar 

  101. Chahlavi A, Rabkin S, Todo T et al. Effect of prior exposure to herpes simplex virus 1 on viral vector–mediated tumor therapy in immunocompetent mice Gene Ther 1999 6: 1751–1758

    CAS  PubMed  Google Scholar 

  102. Miller CG, Fraser NW . Role of the immune response during neuro-attenuated herpes simplex virus–mediated tumor destruction in a murine intracranial melanoma model Cancer Res 2000 60: 5714–5722

    CAS  PubMed  Google Scholar 

  103. Lambright ES, Kang EH, Force S et al. Effect of preexisting anti-herpes immunity on the efficacy of herpes simplex viral therapy in a murine intraperitoneal tumor model Mol Ther 2000 2: 387–393

    CAS  PubMed  Google Scholar 

  104. Todo T, Rabkin SD, Chahlavi A et al. Corticosteroid administration does not affect viral oncolytic activity, but inhibits antitumor immunity in replication-competent herpes simplex virus tumor therapy Hum Gene Ther 1999 10: 2869–2878

    CAS  PubMed  Google Scholar 

  105. Chen Y, Yu DC, Charlton D et al. Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: implications and proposals for human therapy Hum Gene Ther 2000 11: 1553–1567

    CAS  PubMed  Google Scholar 

  106. Burton EA, Bai Q, Goins WF et al. Targeting gene expression using HSV vectors Adv Drug Deliv Rev 2001 53: 155–170

    CAS  PubMed  Google Scholar 

  107. Wickham TJ . Targeting adenovirus Gene Ther 2000 7: 110–114

    CAS  PubMed  Google Scholar 

  108. Laquerre S, Anderson DB, Stolz DB et al. Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells J Virol 1998 72: 9683–9697

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Farassati F, Yang AD, Lee PW . Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1 Nat Cell Biol 2001 3: 745–750

    CAS  PubMed  Google Scholar 

  110. Coffey MC, Strong JE, Forsyth PA et al. Reovirus therapy of tumors with activated Ras pathway Science 1998 282: 1332–1334

    CAS  PubMed  Google Scholar 

  111. Stojdl DF, Lichty B, Knowles S et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus Nat Med 2000 6: 821–825

    CAS  PubMed  Google Scholar 

  112. Balachandran S, Porosnicu M, Barber GN . Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc function and involves the induction of apoptosis J Virol 2001 75: 3474–3479

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bergmann M, Romirer I, Sachet M et al. A genetically engineered influenza A virus with ras-dependent oncolytic properties Cancer Res 2001 61: 8188–8193

    CAS  PubMed  Google Scholar 

  114. Fu X, Zhang X . Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype Cancer Res 2002 62: 2306–2312

    CAS  PubMed  Google Scholar 

  115. Heise C, Lemmon M, Kirn D . Efficacy with a replication-selective adenovirus plus cisplatin-based chemotherapy: dependence on sequencing but not p53 functional status or route of administration Clin Cancer Res 2000 6: 4908–4914

    CAS  PubMed  Google Scholar 

  116. Coen DM, Kosz-Vnenchak M, Jacobson JG et al. Thymidine kinase–negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate Proc Natl Acad Sci USA 1989 86: 4736–4740

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Markert JM, Malick A, Coen DM et al. Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir Neurosurgery 1993 32: 597–603

    CAS  PubMed  Google Scholar 

  118. Chambers R, Gillespie GY, Soroceanu L et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma Proc Natl Acad Sci USA 1995 92: 1411–1415

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Randazzo BP, Kesari S, Gesser RM et al. Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant Virology 1995 211: 94–101

    CAS  PubMed  Google Scholar 

  120. Pyles RB, Warnick RE, Chalk CL et al. A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors Hum Gene Ther 1997 8: 533–544

    CAS  PubMed  Google Scholar 

  121. Andreansky S, He B, van Cott J et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins Gene Ther 1998 5: 121–130

    CAS  PubMed  Google Scholar 

  122. Robinson M, Liu B, Han Z et al. ICP34.5 deleted herpes simplex virus 1 with enhanced oncolytic and anti-tumor properties: preclinical studies Mol Ther 2002 5: S319

    Google Scholar 

Download references

Acknowledgements

We would like to thank the past and current members of the laboratory who have contributed to this research, in particular RL Martuza and T Todo for their invaluable assistance and insight. SD Rabkin is a member of the Scientific Advisory Board of MediGene, which has a license from Georgetown University for G207 and other vectors. This research has been supported, in part, by grants from the National Institutes of Health (NS32677, NS33342), Department of Defense (DAMD17-99-1-9202, DAMD17-98-1-8490), and CaPCURE Foundation (Santa Monica, CA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D Rabkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varghese, S., Rabkin, S. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 9, 967–978 (2002). https://doi.org/10.1038/sj.cgt.7700537

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700537

Keywords

This article is cited by

Search

Quick links