Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced antitumor effect of RGD fiber-modified adenovirus for gene therapy of oral cancer

Abstract

Current clinical success rates of adenoviral vector (Adv)–based gene therapy of squamous cell carcinoma (SCC) of the head and neck remain unsatisfactory. A major problem with this approach is thought to be related to low Adv transduction efficiency due to weak expression of the adenovirus receptor, coxsackie–adenovirus receptor (CAR), in SCC. To improve the limited infectivity of Adv in oral SCC, we constructed mutated Adv incorporating the integrin-binding motif, RGD, in the HI loop of the fiber knob. The mutated Adv infected target cells through integrins commonly expressed in oral SCC. LacZ marker gene expression after infection with this mutated Adv (Adv-F/RGD) in oral SCC cell lines that showed reduced expression of CAR was approximately 5–10 times higher than that obtained with the parental Adv containing wild-type fiber knob (Adv-F/wt). In an in vitro study, transduction of oral cancer cell lines with Adv-F/RGD expressing human IL-2 (AxCAhIL2-F/RGD) resulted in greater production of cytokine than AxCAhIL2-F/wt infection. In an in vivo therapeutic xenograft model of oral SCC in nude mice, AxCAhIL2-F/RGD demonstrated antitumor effects superior to those of AxCAhIL2-F/wt. These data suggest that exploitation of genetically altered adenovirus vectors with integrin-binding motifs may offer significant improvements in oral SCC gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vokes EE, Weichselbaum RR & Lippman SM, et al. Head and neck cancer. N Engl J Med. 1993; 328: 184–194.

    Article  CAS  Google Scholar 

  2. Larson DL, Lindberg RD & Lane E, et al. Major complications of radiotherapy in cancer of the oral cavity and oropharynx. A 10 year retrospective study. Am J Surg. 1983; 146: 531–536.

    Article  CAS  Google Scholar 

  3. Ervin TJ, Clark JR & Weichselbaum RR, et al. An analysis of induction and adjuvant chemotherapy in the multidisciplinary treatment of squamous-cell carcinoma of the head and neck. J Clin Oncol. 1987; 5: 10–20.

    Article  CAS  Google Scholar 

  4. O'Malley BW Jr, Chen SH & Schwartz MR, et al. Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude mouse model. Cancer Res. 1995; 55: 1080–1085.

    CAS  PubMed  Google Scholar 

  5. Goebel EA, Davidson BL & Zabner J, et al. Adenovirus-mediated gene therapy for head and neck squamous cell carcinomas. Ann Otol Rhinol Laryngol. 1996; 105: 562–567.

    Article  CAS  Google Scholar 

  6. Clayman GL, el-Naggar AK & Roth JA, et al. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res. 1995; 55: 1–6.

    CAS  PubMed  Google Scholar 

  7. O'Malley BW, Cope KA & Chen SH, et al. Combination gene therapy for oral cancer in a murine model. Cancer Res. 1996; 56: 1737–1741.

    CAS  PubMed  Google Scholar 

  8. Wilson KM, Stambrook PJ & Bi WL, et al. HSV-tk gene therapy in head and neck squamous cell carcinoma. Enhancement by the local and distant bystander effect. Arch Otolaryngol Head Neck Surg. 1996; 122: 746–749.

    Article  CAS  Google Scholar 

  9. Liu TJ, el-Naggar AK & McDonnell TJ, et al. Apoptosis induction mediated by wild-type p53 adenoviral gene transfer in squamous cell carcinoma of the head and neck. Cancer Res. 1995; 55: 3117–3122.

    CAS  PubMed  Google Scholar 

  10. Clayman GL, el-Naggar AK & Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998; 16: 2221–2232.

    Article  CAS  Google Scholar 

  11. Clayman GL, Frank DK & Bruso PA, et al. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin Cancer Res. 1999; 5: 1715–1722.

    CAS  PubMed  Google Scholar 

  12. Rocco JW, Li D & Liggett WH Jr et al. p16INK4A adenovirus-mediated gene therapy for human head and neck squamous cell cancer. Clin Cancer Res. 1998; 4: 1697–1704.

    CAS  PubMed  Google Scholar 

  13. Sewell DA, Li D & Duan L, et al. Optimizing suicide gene therapy for head and neck cancer. Laryngoscope. 1997; 107: 1490–1495.

    Article  CAS  Google Scholar 

  14. Bergelson JM, Krithivas A & Celi L, et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol. 1998; 72: 415–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller CR, Buchsbaum DJ & Reynolds PN, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor–independent gene transfer. Cancer Res. 1998; 58: 5738–5748.

    CAS  PubMed  Google Scholar 

  16. Kasono K, Blackwell JL & Douglas JT, et al. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res. 1999; 5: 2571–2579.

    CAS  PubMed  Google Scholar 

  17. Li D, Duan L & Freimuth P, et al. Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res. 1999; 5: 4175–4181.

    CAS  PubMed  Google Scholar 

  18. Bergelson JM, Cunningham JA & Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997; 275: 1320–1323.

    Article  CAS  Google Scholar 

  19. Tomko RP, Xu R & Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA. 1997; 94: 3352–3356.

    Article  CAS  Google Scholar 

  20. Pasqualini R, Koivunen E & Ruoslahti E . Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol. 1997; 15: 542–546.

    Article  CAS  Google Scholar 

  21. Wickham TJ, Tzeng E & Shears LL II, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol. 1997; 71: 8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dmitriev I, Krasnykh V & Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor–independent cell entry mechanism. J Virol. 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Krasnykh V, Dmitriev I & Mikheeva G, et al. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol. 1998; 72: 1844–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshida Y, Sadata A & Zhang W, et al. Generation of fiber-mutant recombinant adenoviruses for gene therapy of malignant glioma. Hum Gene Ther. 1998; 9: 2503–2515.

    Article  CAS  Google Scholar 

  25. Miyake S, Makimura M & Kanegae Y, et al. Efficient generation of recombinant adenoviruses using adenovirus DNA–terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA. 1996; 93: 1320–1324.

    Article  CAS  Google Scholar 

  26. Maizel JV Jr, White DO & Scharff MD . The polypeptides of adenovirus: I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology. 1968; 36: 115–125.

    Article  CAS  Google Scholar 

  27. Nyberg-Hoffman C, Shabram P & Li W, et al. Sensitivity and reproducibility in adenoviral infectious titer determination. Nat Med. 1997; 3: 808–811.

    Article  CAS  Google Scholar 

  28. Nakamura Y, Wakimoto H & Abe J, et al. Adoptive immunotherapy with murine tumor–specific T lymphocytes engineered to secrete interleukin 2. Cancer Res. 1994; 54: 5757–5760.

    CAS  PubMed  Google Scholar 

  29. Belin MT & Boulanger P . Involvement of cellular adhesion sequences in the attachment of adenovirus to the HeLa cell surface. J Gen Virol. 1993; 74: 1485–1497, Part 8

    Article  CAS  Google Scholar 

  30. Wickham TJ, Mathias P & Cheresh DA, et al. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993; 73: 309–319.

    Article  CAS  Google Scholar 

  31. Ruoslahti E . RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996; 12: 697–715.

    Article  CAS  Google Scholar 

  32. Hynes RO, Schwarzbauer JE & Tamkun JW . Isolation and analysis of cDNA and genomic clones of fibronectin and its receptor. Methods Enzymol. 1987; 144: 447–463.

    Article  CAS  Google Scholar 

  33. Chen SH, Shine HD & Goodman JC, et al. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci USA. 1994; 91: 3054–3057.

    Article  CAS  Google Scholar 

  34. Bagutti C, Speight PM & Watt FM . Comparison of integrin, cadherin, and catenin expression in squamous cell carcinomas of the oral cavity. J Pathol. 1998; 186: 8–16.

    Article  CAS  Google Scholar 

  35. Thomas GJ, Jones J & Speight PM . Integrins and oral cancer. Oral Oncol. 1997; 33: 381–388.

    Article  CAS  Google Scholar 

  36. Nagashima S, Reichert TE & Kashii Y, et al. In vitro and in vivo characteristics of human squamous cell carcinoma of the head and neck cells engineered to secrete interleukin-2. Cancer Gene Ther. 1997; 4: 366–376.

    CAS  PubMed  Google Scholar 

  37. Gropp R, Frye M & Wagner TO, et al. Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum Gene Ther. 1999; 10: 957–964.

    Article  CAS  Google Scholar 

  38. Grill J, Van Beusechem VW & Van Der Valk P, et al. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res. 2001; 7: 641–650.

    CAS  PubMed  Google Scholar 

  39. Ganly I, Kirn D & Eckhardt G, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000; 6: 798–806.

    CAS  PubMed  Google Scholar 

  40. Lamont JP, Nemunaitis J & Kuhn JA, et al. A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann Surg Oncol. 2000; 7: 588–592.

    Article  CAS  Google Scholar 

  41. Nemunaitis J, Ganly I & Khuri F, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55 kD gene–deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 2000; 60: 6359–6366.

    CAS  PubMed  Google Scholar 

  42. Nemunaitis J, Cunningham C & Buchanan A, et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther. 2001; 8: 746–759.

    Article  CAS  Google Scholar 

  43. Suzuki K, Fueyo J & Krasnykh V, et al. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res. 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Grants from the Ministry and Education, Culture, and Science of Japan, the Ministry of Health and Welfare of Japan, the Naito Foundation, and the Shionogi Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehari, H., Ito, Y., Nakamura, T. et al. Enhanced antitumor effect of RGD fiber-modified adenovirus for gene therapy of oral cancer. Cancer Gene Ther 10, 75–85 (2003). https://doi.org/10.1038/sj.cgt.7700529

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700529

Keywords

This article is cited by

Search

Quick links