Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

VP22-mediated intercellular transport of p53 in hepatoma cells in vitro and in vivo

Abstract

The capacity of VP22 chimeric proteins to spread from the primary transduced cell to surrounding cells could improve gene therapy approaches, especially in cancer therapy. However, there are conflicting data about VP22-mediated intercellular trafficking in different studies. To assess the role of VP22 in gene therapy of hepatocellular carcinomas (HCCs) we constructed expression vectors for N- and C-terminal versions of VP22-p53 fusion proteins and investigated the VP22-mediated shuttle effect in hepatoma cells by cotransfection experiments. VP22-mediated trafficking was not detectable in hepatoma cells in vitro by fluorescence microscopy, but reporter gene transactivation assays demonstrated intercellular trafficking of functional VP22-p53 in vitro. For in vivo experiments, the recombinant adenoviruses Ad5CMVp53 and Ad5CMVp53-VP22 were constructed. In contrast to the in vitro experiments intercellular trafficking of VP22-p53 could be observed in subcutaneous tumors of hepatoma cells by fluorescence microscopy, indicating a stronger shuttle effect in solid tumors compared to cell culture experiments. Because spread of p53-VP22 in liver tumors was correlated with enhanced apoptosis of hepatoma cells VP22-mediated trafficking of potential therapeutic proteins may improve the results of gene therapy of HCCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zieren J, Zieren HU, Muller JM . Liver resections for primary liver malignancies. Personal results and analysis of the literature Langenbecks Arch Chir 1994 379: 159–167

    Article  CAS  PubMed  Google Scholar 

  2. Pichlmayr R, Weimann A, Oldhafer KJ et al. Role of liver transplantation in the treatment of unresectable liver cancer World J Surg 1995 19: 807–813

    Article  CAS  PubMed  Google Scholar 

  3. Livraghi T, Giorgio A, Marin G et al. Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection Radiology 1995 197: 101–108

    Article  CAS  Google Scholar 

  4. Seki T, Wakabayashi M, Nakagawa T et al. Percutaneous microwave coagulation therapy for patients with small hepatocellular carcinoma: comparison with percutaneous ethanol injection therapy Cancer 1999 85: 1694–1702

    Article  CAS  Google Scholar 

  5. Bao JJ, Zhang WW, Kuo MT . Adenoviral delivery of recombinant DNA into transgenic mice bearing hepatocellular carcinomas Hum Gene Ther 1996 7: 355–365

    Article  CAS  PubMed  Google Scholar 

  6. Gao GP, Yang Y, Wilson JM . Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy JVirol 1996 70: 8934–8943

    CAS  Google Scholar 

  7. Lieber A, He CY, Meuse L et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors J Virol 1997 71: 8798–8807

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kubicka S, Kuhnel F, Zender L et al. p53 represses CAAT enhancer-binding protein (C/EBP)-dependent transcription of the albumin gene. A molecular mechanism involved in viral liver infection with implications for hepatocarcinogenesis JBiol Chem 1999 274: 32137–32144

    Article  CAS  Google Scholar 

  9. Kuhnel F, Zender L, Paul Y et al. NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis J Biol Chem 2000 275: 6421–6427

    Article  CAS  PubMed  Google Scholar 

  10. Fawell S, Seery J, Daikh Y et al. Tat-mediated delivery of heterologous proteins into cells Proc Natl Acad Sci USA 1994 91: 664–668

    Article  CAS  PubMed  Google Scholar 

  11. Elliott G, O'Hare P . Intercellular trafficking and protein delivery by a herpesvirus structural protein Cell 1997 88: 223–233

    Article  CAS  Google Scholar 

  12. Ford KG, Souberbielle BE, Darling D, Farzaneh F . Protein transduction: an alternative to genetic intervention? Gene Ther 2001 8: 1–4

    Article  CAS  PubMed  Google Scholar 

  13. Phelan A, Elliott G, O'Hare P . Intercellular delivery of functional p53 by the herpesvirus protein VP22 Nat Biotechnol 1998 16: 440–443

    Article  CAS  PubMed  Google Scholar 

  14. Wybranietz WA, Prinz F, Spiegel M et al. Quantification of VP22-GFP spread by direct fluorescence in 15 commonly used cell lines J Gene Med 1999 1: 265–274

    Article  CAS  PubMed  Google Scholar 

  15. Liu CS, Kong B, Xia HH, Ellem KA, Wei MQ . VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death J Gene Med 2001 3: 145–152

    Article  CAS  PubMed  Google Scholar 

  16. Aints A, Guven H, Gahrton G, Smith CI, Dilber MS . Mapping of herpes simplex virus-1 VP22 functional domains for inter- and subcellular protein targeting Gene Ther 2001 8: 1051–1056

    Article  CAS  PubMed  Google Scholar 

  17. Fang B, Xu B, Koch P, Roth JA . Intercellular trafficking of VP22–GFP fusion proteins is not observed in cultured mammalian cells Gene Ther 1998 5: 1420–1424

    Article  CAS  PubMed  Google Scholar 

  18. Falnes PO, Wesche J, Olsnes S . Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment Biochemistry 2001 40: 4349–4358

    Article  CAS  PubMed  Google Scholar 

  19. Lai Z, Han I, Zirzow G, Brady RO, Reiser J . Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors Proc Natl Acad Sci USA 2000 97: 11297–11302

    Article  CAS  PubMed  Google Scholar 

  20. Wills KN, Atencio IA, Avanzini JB et al. Intratumoral spread and increased efficacy of a p53-VP22 fusion protein expressed by a recombinant adenovirus J Virol 2001 75: 8733–8741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses Proc Natl Acad Sci USA 1998 95: 2509–2514

    Article  CAS  Google Scholar 

  22. Ponchel F, Puisieux A, Tabone E et al. Hepatocarcinoma-specific mutant p53-249ser induces mitotic activity but has no effect on transforming growth factor beta 1–mediated apoptosis Cancer Res 1994 54: 2064–2068

    CAS  PubMed  Google Scholar 

  23. Anderson SC, Johnson DE, Harris MP et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus Clin Cancer Res 1998 4: 1649–1659

    CAS  PubMed  Google Scholar 

  24. Qian C, Idoate M, Bilbao R et al. Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma Hum Gene Ther 1997 8: 349–358

    Article  CAS  PubMed  Google Scholar 

  25. Elliott G, O'Hare P . Intercellular trafficking of VP22-GFP fusion proteins Gene Ther 1999 6: 149–151

    Article  CAS  PubMed  Google Scholar 

  26. Hupp TR, Meek DW, Midgley CA, Lane DP . Regulation of the specific DNA binding function of p53 Cell 1992 71: 875–886

    Article  CAS  Google Scholar 

  27. Anderson ME, Woelker B, Reed M, Wang P, Tegtmeyer P . Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation Mol Cell Biol 1997 17: 6255–6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research was supported by grants of the Deutsche Forschungsgemeinschaft (KU 12/13 1/1), the Wilhelm Sander Stiftung (98.046.1), and the Helmut Horten Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kubicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zender, L., Kühnel, F., Köck, R. et al. VP22-mediated intercellular transport of p53 in hepatoma cells in vitro and in vivo. Cancer Gene Ther 9, 489–496 (2002). https://doi.org/10.1038/sj.cgt.7700465

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700465

Keywords

This article is cited by

Search

Quick links