Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRAIL enhances thymidine kinase/ganciclovir gene therapy of neuroblastoma cells

Abstract

The clinical benefit of suicide gene therapy of tumors has been marginal, mostly due to the low gene transfer efficiency in vivo. The death-inducing ligand, TRAIL, effectively kills many tumor cell types, while sparing most normal tissues. We hypothesized that TRAIL may enhance HSV thymidine kinase/ganciclovir (TK/GCV) gene therapy of tumor cells by augmenting both target and bystander cell kill. Human SH-EP neuroblastoma cells expressing TK as well as bystander cells were effectively killed by apoptosis, and their clonogenicity was ablated following GCV. Human TRAIL enhanced TK/GCV–induced cell death and decreased clonogenicity of TK-expressing cells and also of bystander cells. Cooperation between TRAIL and TK/GCV depended both on caspase activation and on mitochondrial apoptogenic function because both the broad-spectrum caspase inhibitor zVAD.fmk and overexpression of Bcl-2 decreased enhancement of cell kill by TRAIL. Facilitation of TRAIL signalling by up-regulation of TRAIL receptors did not contribute to enhancement because cell surface expression of the agonistic TRAIL receptors 1 and 2 was not increased by TK/GCV. In conclusion, the concerted activation of caspases and the mitochondrial amplification of caspase activation by TK/GCV may explain the cooperative effect of TK/GCV and TRAIL on the kill of neuroblastoma cells. Because combined treatment also augmented the bystander cell kill, the addition of TRAIL may increase the efficacy of TK/GCV gene therapy of neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors Curr Opin Cell Biol 1999 11: 255–260

    Article  CAS  PubMed  Google Scholar 

  2. Beltinger C, Fulda S, Kammertoens T, Meyer E, Uckert W, Debatin KM . Herpes simplex virus thymidine kinase/ganciclovir–induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases Proc Natl Acad Sci USA 1999 96: 8699–8704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beltinger C, Fulda S, Kammertoens T, Uckert W, Debatin KM . Mitochondrial amplification of death signals determines thymidine kinase/ganciclovir–triggered activation of apoptosis Cancer Res 2000 60: 3212–3217

    CAS  PubMed  Google Scholar 

  4. Beltinger C, Uckert W, Debatin KM . Suicide gene therapy for pediatric tumors J Mol Med 2001 78: 598–612

    Article  CAS  PubMed  Google Scholar 

  5. Benedetti S, Dimeco F, Pollo B et al. Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene Hum Gene Ther 1997 8: 1345–1353

    Article  CAS  PubMed  Google Scholar 

  6. Bi WL, Parysek LM, Warnick R, Stambrook PJ . In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy Hum Gene Ther 1993 4: 725–731

    Article  CAS  PubMed  Google Scholar 

  7. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM . Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage Science 1984 224: 1121–1124

    Article  CAS  PubMed  Google Scholar 

  8. Chinnaiyan AM, Prasad U, Shankar S et al. Combined effect of tumor necrosis factor–related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy Proc Natl Acad Sci USA 2000 97: 1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dejosez M, Ramp U, Mahotka C et al. Sensitivity to TRAIL/APO-2L–mediated apoptosis in human renal cell carcinomas and its enhancement by topotecan Cell Death Differ 2000 7: 1127–1136

    Article  CAS  PubMed  Google Scholar 

  10. Denizot F, Lang R . Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability J Immunol Methods 1986 89: 271–277

    Article  CAS  PubMed  Google Scholar 

  11. Fletcher C, Sawchuk R, Chinnock B, de Miranda P, Balfour HH Jr . Human pharmacokinetics of the antiviral drug DHPG Clin Pharmacol Ther 1986 40: 281–286

    Article  CAS  PubMed  Google Scholar 

  12. Freeman SM, Abboud CN, Whartenby KA et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  13. Friedmann T, Yee J-K . Pseudotyped retroviral vectors for studies of human gene therapy Nat Med 1995 1: 275–277

    Article  CAS  PubMed  Google Scholar 

  14. Fulda S, Susin SA, Kroemer G, Debatin KM . Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells Cancer Res 1998 58: 4453–4460

    CAS  PubMed  Google Scholar 

  15. Gliniak B, Le T . Tumor necrosis factor–related apoptosis-inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11 Cancer Res 1999 59: 6153–6158

    CAS  PubMed  Google Scholar 

  16. Gong B, Almasan A . Apo2 ligand/TNF–related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells Cancer Res 2000 60: 5754–5760

    CAS  PubMed  Google Scholar 

  17. Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL . Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis J Immunol 2000 165: 2886–2894

    Article  CAS  PubMed  Google Scholar 

  18. Hakumaki JM, Poptani H, Puumalainen AM et al. Quantitative 1H nuclear magnetic resonance diffusion spectroscopy of BT4C rat glioma during thymidine kinase–mediated gene therapy in vivo: identification of apoptotic response Cancer Res 1998 58: 3791–3799

    CAS  PubMed  Google Scholar 

  19. Hamel W, Magnelli L, Chiarugi VP, Israel MA . Herpes simplex virus thymidine kinase/ganciclovir–mediated apoptotic death of bystander cells Cancer Res 1996 56: 2697–2702

    CAS  PubMed  Google Scholar 

  20. Hinz S, Trauzold A, Boenicke L et al. Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor–mediated apoptosis Oncogene 2000 19: 5477–5486

    Article  CAS  PubMed  Google Scholar 

  21. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N . Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor–related apoptosis-inducing ligand-induced apoptosis Cancer Res 2000 60: 4315–4319

    CAS  PubMed  Google Scholar 

  22. Isaacs JS, Hardman R, Carman TA, Barrett JC, Weissman BE . Differential subcellular p53 localization and function in N- and S-type neuroblastoma cell lines Cell Growth Differ 1998 9: 545–555

    CAS  PubMed  Google Scholar 

  23. Jo M, Kim TH, Seol DW et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor–related apoptosis-inducing ligand Nat Med 2000 6: 564–567

    Article  CAS  PubMed  Google Scholar 

  24. Kagawa S, He C, Gu J et al. Antitumor activity and bystander effects of the tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) gene Cancer Res 2001 61: 3330–3338

    CAS  PubMed  Google Scholar 

  25. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S . Chemotherapy augments TRAIL-induced apoptosis in breast cell lines Cancer Res 1999 59: 734–741

    CAS  PubMed  Google Scholar 

  26. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A . Apo2L/TRAIL–dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5 Immunity 2000 12: 611–620

    Article  CAS  PubMed  Google Scholar 

  27. Klatzmann D, Valery CA, Bensimon G et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study group on gene therapy for glioblastoma Hum Gene Ther 1998 9: 2595–2604

    CAS  PubMed  Google Scholar 

  28. Kuriyama S, Kikukawa M, Masui K et al. Cancer gene therapy with HSV-tk/GCV system depends on T-cell–mediated immune responses and causes apoptotic death of tumor cells in vivo Int J Cancer 1999 83: 374–380

    Article  CAS  PubMed  Google Scholar 

  29. Lacour S, Hammann A, Wotawa A, Corcos L, Solary E, Dimanche-Boitrel MT . Anticancer agents sensitize tumor cells to tumor necrosis factor–related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis Cancer Res 2001 61: 1645–1651

    CAS  PubMed  Google Scholar 

  30. Leverkus M, Neumann M, Mengling T et al. Regulation of tumor necrosis factor–related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes Cancer Res 2000 60: 553–559

    CAS  PubMed  Google Scholar 

  31. Mariani SM, Matiba B, Armandola EA, Krammer PH . Interleukin 1 beta–converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells J Cell Biol 1997 137: 221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maris JM, Matthay KK . Molecular biology of neuroblastoma J Clin Oncol 1999 17: 2264–2279

    Article  CAS  PubMed  Google Scholar 

  33. Melcher A, Gough M, Todryk S, Vile R . Apoptosis or necrosis for tumor immunotherapy: what's in a name? J Mol Med 1999 77: 824–833

    Article  CAS  PubMed  Google Scholar 

  34. Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG . Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression Nat Med 1998 4: 581–587

    Article  CAS  PubMed  Google Scholar 

  35. Mesnil M, Yamasaki H . Bystander effect in herpes simplex virus–thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication Cancer Res 2000 60: 3989–3999

    CAS  PubMed  Google Scholar 

  36. Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenee WK, Huang HJ . Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor–related apoptosis-inducing ligand in vitro and in vivo Cancer Res 2000 60: 847–853

    CAS  PubMed  Google Scholar 

  37. Nagata S . Fas ligand–induced apoptosis Annu Rev Genet 1999 33: 29–55

    Article  CAS  PubMed  Google Scholar 

  38. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry J Immunol Methods 1991 139: 271–279

    Article  CAS  PubMed  Google Scholar 

  39. Nimmanapalli R, Perkins CL, Orlando M, O'Bryan E, Nguyen D, Bhalla KN . Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor–related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels Cancer Res 2001 61: 759–763

    CAS  PubMed  Google Scholar 

  40. Nitsch R, Bechmann I, Deisz RA et al. Human brain-cell death induced by tumour-necrosis-factor–related apoptosis-inducing ligand (TRAIL) Lancet 2000 356: 827–828

    Article  CAS  PubMed  Google Scholar 

  41. Sheikh MS, Burns TF, Huang Y et al. p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha Cancer Res 1998 58: 1593–1598

    CAS  PubMed  Google Scholar 

  42. Takeda K, Hayakawa Y, Smyth MJ et al. Involvement of tumor necrosis factor–related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells Nat Med 2001 7: 94–100

    Article  CAS  PubMed  Google Scholar 

  43. Teitz T, Wei T, Valentine MB et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN Nat Med 2000 6: 529–535

    Article  CAS  PubMed  Google Scholar 

  44. Uckert W, Kammertons T, Haack K et al. Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo Hum Gene Ther 1998 9: 855–865

    Article  CAS  PubMed  Google Scholar 

  45. Vile RG, Castleden S, Marshall J, Camplejohn R, Upton C, Chong H . Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile ofintratumoural cytokine expression Int J Cancer 1997 71: 267–274

    Article  CAS  PubMed  Google Scholar 

  46. Vile RG, Russell SJ, Lemoine NR . Cancer gene therapy: hard lessons and new courses Gene Ther 2000 7: 2–8

    Article  CAS  PubMed  Google Scholar 

  47. Walczak H, Bouchon A, Stahl H, Krammer PH . Tumor necrosis factor–related apoptosis-inducing ligand retains its apoptosis-inducing capacity on Bcl-2– or Bcl-xL–overexpressing chemotherapy-resistant tumor cells Cancer Res 2000 60: 3051–3057

    CAS  PubMed  Google Scholar 

  48. Walczak H, Degli-Esposti MA, Johnson RS et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL EMBO J 1997 16: 5386–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walczak H, Krammer PH . The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems Exp Cell Res 2000 256: 58–66

    Article  CAS  PubMed  Google Scholar 

  50. Walczak H, Miller RE, Ariail K et al. Tumoricidal activity of tumor necrosis factor–related apoptosis-inducing ligand in vivo Nat Med 1999 5: 157–163

    Article  CAS  PubMed  Google Scholar 

  51. Wei SJ, Chao Y, Shih YL, Yang DM, Hung YM, Yang WK . Involvement of Fas (CD95/APO-1) and Fas ligand in apoptosis induced by ganciclovir treatment of tumor cells transduced with herpes simplex virus thymidine kinase Gene Ther 1999 6: 420–431

    Article  CAS  PubMed  Google Scholar 

  52. Wu GS, Burns TF, McDonald ER et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene Nat Genet 1997 17: 141–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W Uckert for advice. The skillful technical assistance of H Knauss is appreciated. This work has been partially supported by grants to CB and KMD from the Deutsche Krebshilfe. Presented, in part, at the 92nd annual meeting of the American Association for Cancer Research, New Orleans, 2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Beltinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltinger, C., Fulda, S., Walczak, H. et al. TRAIL enhances thymidine kinase/ganciclovir gene therapy of neuroblastoma cells. Cancer Gene Ther 9, 372–381 (2002). https://doi.org/10.1038/sj.cgt.7700448

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700448

Keywords

This article is cited by

Search

Quick links