Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Midkine and cyclooxygenase-2 promoters are promising for adenoviral vector gene delivery of pancreatic carcinoma

Abstract

Midkine (MK), a heparin binding growth factor, and cyclooxygenase-2 (COX-2), a key enzyme in the conversion of arachidonic acid to prostaglandin, are both up-regulated at the mRNA or protein level in many human malignant tumors. Here, we investigated the tumor specificity of both MK and COX-2 promoters in human pancreatic cancer, with the aim to improve the selectivity of therapeutic gene expression. We constructed recombinant adenoviral (Ad) vectors containing either the luciferase (Luc) reporter gene under the control of the COX-2 or MK promoter or the herpes simplex virus thymidine kinase (HSV Tk) gene under the control of the COX-2 promoter and compared the expression with the cytomegalovirus (CMV) promoter. AdMKLuc achieved moderate to relatively high activity upon infection to both primary and established pancreatic carcinoma cells. Of the two COX-2 promoter regions (COX-2M and COX-2L), both revealed a high activity in primary pancreatic carcinoma cells, whereas in the established pancreatic carcinoma cell lines, COX-2L has an approximately equal high activity compared to CMV. In addition, both AdCOX-2M Tk and AdCOX-2L Tk induced marked cell death in response to ganciclovir (GCV) in three of four established pancreatic carcinoma cell lines. From these results, and because it has been reported that AdMKTk and AdCOX-2L Tk in combination with GCV did not reveal significant liver toxicity, we conclude that the MK as well as the COX-2 promoters are promising tumor-specific promoters for Ad vector–based gene therapy of pancreatic cancer. Cancer Gene Therapy (2001) 8, 990–996

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manu M, Buckels J, Bramhall S . Molecular technology and pancreatic cancer Br J Surg 2000 87: 840–853

    Article  CAS  PubMed  Google Scholar 

  2. Pearson AS, Koch PE, Atkinson N, et al . Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic cancer cell lines Clin Cancer Res 1999 5: 4208–4213

    CAS  PubMed  Google Scholar 

  3. Von Hoff DD, Goodwin AL, Garcia L . Advances in treatment of patients with pancreatic cancer: improvement in symptoms and survival time Br J Cancer 1998 78: 9–13

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dmitriev I, Krasnykh V, Miller CR, et al . An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor independent cell entry mechanism J Virol 1998 72: 9706–9713

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT . Ectodomain of Coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor positive cells J Virol 2000 74: 6875–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wesseling JG, Bosma PJ, Krasnykh V, et al . Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin targeted adenoviral vectors Gene Ther 2001 8: 969–976

    Article  CAS  PubMed  Google Scholar 

  7. Ilan Y, Saito H, Thummala NR, Chowdhury NR . Adenovirus-mediated gene therapy of liver diseases Semin Liver Dis 1999 19: 49–59

    Article  CAS  PubMed  Google Scholar 

  8. Ohashi M, Kanai F, Tanaka T, et al . In vivo adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing pancreatic cancer Jpn J Cancer Res 1998 9: 457–462

    Article  Google Scholar 

  9. Kadomatsu K, Tomomura M, Muramatsu T . cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis Biochem Biophys Res Commun 1988 151: 1312–1318

    Article  CAS  PubMed  Google Scholar 

  10. Eberhart CE, Coffey RJ, Radhika A, Gardiello FM, Ferrenbach S, DuBois RN . Up-regulation of cyclooxygenase-2 gene expression in human colorectal adenomas and adenocarcinomas Gastroenterology 1994 107: 1183–1188

    Article  CAS  PubMed  Google Scholar 

  11. Tsutsui J, Kadomatsu K, Matsubara S, et al . A new family of heparin-binding growth/differentiation factors: increased midkine expression in Wilm's tumor and other human carcinomas Cancer Res 1993 53: 1281–1285

    CAS  PubMed  Google Scholar 

  12. Garver RI Jr, Radford DM, Donis-Keller H, Wick MR, Milner PG . Midkine and pleiotrophin expression in normal and malignant breast tissue Cancer 1994 74: 1584–1590

    Article  PubMed  Google Scholar 

  13. Aridome K, Tsutsui J, Takao S, et al . Increased midkine expression in human gastrointestinal cancers Jpn J Cancer Res 1995 86: 655–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uehara K, Matsubara S, Kadomatsu K, Tsutsui J, Muramatsu T . Genomic structure of human midkine (MK), a retinoic acid-responsive growth/differentiation factor J Biochem 1992 111: 563–567

    Article  CAS  PubMed  Google Scholar 

  15. Adachi Y, Reynolds PN, Yamamoto M, et al . Midkine promoter–based adenoviral vector gene delivery for pediatric solid tumors Cancer Res 2000 60: 4305–4310

    CAS  PubMed  Google Scholar 

  16. Muramatsu H, Shirahama H, Yonezawa S, Maruta H, Muramatsu T . Midkine, a retinoic acid–inducible growth/differentiation factor: immunochemical evidence for the function and distribution Dev Biol 1993 159: 392–402

    Article  CAS  PubMed  Google Scholar 

  17. DeWitt DL, Meade EA . Serum and glucocorticoid regulation of gene transcription and expression of the prostaglandin H synthase-1 and prostaglandin H synthase-2 isozymes Arch Biochem Biophys 1993 306: 94–102

    Article  CAS  PubMed  Google Scholar 

  18. Hamasaki Y, Kitzler J, Hardman R, Nettesheim P, Eling TE . Phorbol ester and epidermal growth factor enhance the expression of two inducible prostaglandin H synthase genes in rat tracheal epithelial cells Arch Biochem Biophys 1993 304: 226–234

    Article  CAS  PubMed  Google Scholar 

  19. Ristimaki A, Honkanen N, Jankala H, Sipponen P, Harkonen M . Expression of cyclooxygenase-2 in human gastric carcinoma Cancer Res 1997 57: 1276–1280

    CAS  PubMed  Google Scholar 

  20. Zimmerman KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schror K . Cyclooxygenase-2 expression in human esophageal carcinoma Cancer Res 1999 59: 198–204

    Google Scholar 

  21. Tucker ON, Dannenberg AJ, Yang EK, et al . Cyclooxygenase-2 expression is upregulated in human pancreatic cancer Cancer Res 1999 59: 987–990

    CAS  PubMed  Google Scholar 

  22. Inoue H, Nanayama T, Hara S, Yokoyama C, Tanabe T . The cyclic AMP response element plays an essential role in the expression of the human prostaglandin–endoperoxidase synthase 2 gene in differentiated U937 monocytic cells FEBS Lett 1994 350: 51–54

    Article  CAS  PubMed  Google Scholar 

  23. Inoue H, Yokoyama C, Hara S, Tone Y, Tanabe T . Transcriptional regulation of human prostaglandin–endoperoxidase synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells J Biol Chem 1995 270: 24965–24971

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto M, Alemany R, Adachi Y, Grizzle WE, Curiel DT . Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers Mol Ther 2001 3: 385–394

    Article  CAS  PubMed  Google Scholar 

  25. Herz J, Gerard RD . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice Proc Natl Acad Sci USA 1993 90: 2812–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garver RI Jr, Goldsmith KT, Rodu B, Hu P-C, Sorscher EJ, Curiel DT . Strategy for achieving selective killing of carcinomas Gene Ther 1994 1: 46–50

    PubMed  Google Scholar 

  27. He T-C, Zhou S, DaCosta LT, Yu J, Kinzler KW, Vogelstein BA . A simplified system for generating recombinant adenoviruses Proc Natl Acad Sci USA 1998 95: 2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Graham FL, Prevec L . Manipulation of adenovirus vectors In: Murray EJ, Walker JM, eds. Molecular Biology, Gene Transfer and Expression Techniques Totawa, NJ: Humana Press 1991 109–128

  29. Kurachi S, Deyashiki Y, Takeshita J, Kurachi K . Genetic mechanisms of age regulation of human blood coagulation factor IX Science 1999 285: 739–743

    Article  CAS  PubMed  Google Scholar 

  30. Yip-Schneider MT, Barnard DS, Billings SD, et al . Cyclooxygenase-2 expression in human pancreatic adenocarcinomas Carcinogenesis 2000 21: 139–146

    Article  CAS  PubMed  Google Scholar 

  31. Okami J, Yamamoto H, Fujiwara Y, et al . Overexpression of cyclooxygenase-2 in carcinoma of the pancreas Clin Cancer Res 1999 5: 2018–2024

    CAS  PubMed  Google Scholar 

  32. Segawa T, Takebayashi H, Kakehi Y, Yoshida O, Narumiya S, Kakizuka A . Prostate-specific amplification of expanded polyglutamine expression: a novel approach for cancer gene therapy Cancer Res 1998 58: 2282–2287

    CAS  PubMed  Google Scholar 

  33. Park BJ, Brown CK, Hu Y, et al . Augmentation of melanoma-specific gene expression using a tandem melanocyte-specific enhancer results in increased cytotoxicity of the purine nucleoside phosphorylase gene in melanoma Hum Gene Ther 1999 10: 889–898

    Article  CAS  PubMed  Google Scholar 

  34. Ring CJA, Harris JD, Hust HC, Lemoine NR . Suicide gene expression induced in tumor cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ErbB2 promoter Gene Ther 1996 3: 1094–1103

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health Grants RO1 CA 74242, RO1 HL 50255, National Cancer Institute Grant NO1 CO-97110, United States Department of Defense Grants PC 970193 and PC 991018, the CapCure Foundation and Training Grant IT32 CA75930 to David T. Curiel, MD, and US Army Breast Grante DOD BC990177 to Igor Dmitriev, PhD. In addition, this work was supported from grants by the European Gastro-Surgical School (EPGS) at the Academic Medical Center of the University of Amsterdam and by the Netherlands Organization for Scientific Research (NWO). The authors thank H. Inoue and T. Tanabe of the National Cardiovascular Center Research Institute, Suita, Japan, for providing the plasmid phPES2 containing COX-2 promoter and Shuichiro Matsubara of the Kagoshima University, Kagoshima, Japan, as well as Takashi Muramatsu of the Nagoya University School of Medicine, Nagoya, Japan, for providing the MK promoter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T Curiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesseling, J., Yamamoto, M., Adachi, Y. et al. Midkine and cyclooxygenase-2 promoters are promising for adenoviral vector gene delivery of pancreatic carcinoma. Cancer Gene Ther 8, 990–996 (2001). https://doi.org/10.1038/sj.cgt.7700403

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700403

Keywords

This article is cited by

Search

Quick links