Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rapid induction of cytotoxic T-cell response against cervical cancer cells by human papillomavirus type 16 E6 antigen gene delivery into human dendritic cells by an adeno-associated virus vector

Abstract

We have shown that the pulsing of dendritic cells (DCs) with human papillomavirus type 16 (HPV-16) antigen proteins by lipofection stimulates class I–restricted cytotoxic T lymphocyte (CTL) response against primary cervical cancer cells. Also, we have shown that adeno-associated virus (AAV) was able to effectively deliver a cytokine gene into DCs. It has been our hypothesis that the delivery of antigen genes into DCs, resulting in endogenous and continuous antigen protein expression, may result in an improvement in T-cell priming by DCs. Here, DCs are pulsed (infected) with an AAV vector containing the HPV-16 E6 gene. After infection, transduced E6 gene mRNA expression and vector chromosomal integration could be identified in infected DCs. Furthermore, priming rosettes formed at early times when the AAV/E6 vector was used. Most importantly, AAV/E6 vector pulsing of DCs induced, after only 7 days of priming, a strong CTL response against primary cervical cancer cell lines, compared to bacterial E6 protein lipofection. Killing was significantly blocked by the addition of anti-MHC class I antibodies. Fluorescence-activated cell sorter (FACS) analysis of resulting primed cell populations revealed higher levels of CD8+ T cells by AAV-based pulsing, with little evidence of CD56 (NK). FACS analysis of the DC populations revealed that AAV/E6 vector–pulsed DCs had higher levels of CD80 and lower levels of CD86 than protein-pulsed DCs. These data suggest that rAAV may be appropriate for antigen pulsing of DCs for immunotherapy protocols. Finally, our protocol represents an advance in regards to the time needed for generating a CTL response compared to other techniques. Cancer Gene Therapy (2001) 8, 948–957

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Steinman RA . The dendritic cell system and its role in immunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  Google Scholar 

  2. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha J Exp Med 1994 179: 1109–1118

    Article  CAS  Google Scholar 

  3. Romani N, Gruner S, Brang D, et al . Proliferating dendritic cell progenitors in human blood J Exp Med 1994 180: 83–93

    Article  CAS  Google Scholar 

  4. Young JW, Inaba K . Dendritic cells as adjuvants for class I major histocompatibility complex–restricted antitumor immunity J Exp Med 1996 183: 7–11

    Article  CAS  Google Scholar 

  5. Zivotgel L, Mayordomo JI, Tjandrawan T, et al . Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation and T helper cell I–associated cytokines J Exp Med 1996 183: 87–97

    Article  Google Scholar 

  6. Paglia P, Chiodoni C, Rhodolfo M, Colombo MP . Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo J Exp Med 1996 183: 317–322

    Article  CAS  Google Scholar 

  7. Alexander M, Salgaller M, Leseban C, Barnes WA, Rosenberg SA, Steller MA . Generation of tumor-specific cytotoxic T lymphocytes from peripheral blood of cervical cancer patients by in vitro stimulation with a synthetic human papillomavirus type 16 E7 epitope Am J Obstet Gynecol 1996 175: 1586–1593

    Article  CAS  Google Scholar 

  8. Philip R, Brunette E, Ashton J, et al . Transgene expression in dendritic cells to induce antigen-specific cytotoxic T cells in healthy donors Cancer Gene Ther 1998 5: 236–246

    CAS  PubMed  Google Scholar 

  9. McArthur JG, Mulligan RC . Induction of protective anti-tumor immunity by gene-modified dendritic cells J Immunother 1998 21: 41–47

    Article  CAS  Google Scholar 

  10. Fields RC, Shimizu K, Mule JJ . Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo Proc Natl Acad Sci USA 1998 95: 9482–9487

    Article  CAS  Google Scholar 

  11. Sonderbye L, Feng S, Yacoubian S, et al . In vivo and in vitro modulation of immune stimulatory capacity of primary dendritic cells by adenovirus-mediated gene transduction Exp Clin Immunogenet 1998 15: 100–111

    Article  CAS  Google Scholar 

  12. Kim CJ, Prevette T, Cormier J, et al . Dendritic cells infected with poxviruses encoding mart-1/melan a sensitize T lymphocytes in vitro J Immunother 1997 20: 276–286

    Article  CAS  Google Scholar 

  13. Peshwa MV, Shi JD, Ruegg C, Laus R, Van Schooten WC . Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide Prostate 1998 36: 129–138

    Article  CAS  Google Scholar 

  14. Dematos P, Abdel-Wahab Z, Vervaert C, Hester D, Seigler H . Pulsing of dendritic cells with cell lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vaccines against b16 tumors in mice J Surg Oncol 1998 74: 79–91

    Article  Google Scholar 

  15. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E . Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA Nature Biotechnology 1998 16: 364–369

    Article  CAS  Google Scholar 

  16. Tjandrawan T, Martin DM, Maeurer MJ, et al . Autologous human dendriphages pulsed with synthetic or natural tumor peptides elicit tumor-specific CTLs in vitro J Immunother 1998 21: 149–157

    Article  CAS  Google Scholar 

  17. Barratt-Boyes SM, Kao H, Finn OJ . Chimpanzee dendritic cells derived in vitro from blood monocytes and pulsed with antigen elicit specific immune responses in vivo J Immunother 1998 21: 142–148

    Article  CAS  Google Scholar 

  18. Tuting T, Wilson CC, Martin DM, et al . Autologous human monocyte–derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro : enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and TFN-alpha J Imm 1998 160: 1139–1147

    CAS  Google Scholar 

  19. De Bruijn ML, Schuurhuis DH, Vierboom MP, et al . Immunization with human papillomavirus type 16 (HPV16) oncoprotein-loaded dendritic cells as well as protein in adjuvant induces MHC class I–restricted protection to HPV16-induced tumor cells Can Res 1998 58: 724–731

    CAS  Google Scholar 

  20. Tsai V, Kawashima I, Keogh E, Daly K, Sette A, Celis E . In vitro immunization and expansion of antigen-specific cytotoxic T lymphocytes for adoptive immunotherapy using peptide-pulsed dendritic cells Crit Rev Immunol 1998 18: 65–75

    Article  CAS  Google Scholar 

  21. Wong C, Morse M, Nair SK . Induction of primary, human antigen-specific cytotoxic T lymphocytes in vitro using dendritic cells pulsed with peptides J Immunol 1998 21: 32–40

    CAS  Google Scholar 

  22. Alters SE, Gadea JR, Sorich M, O'Donoghue G, Talib S, Philip R . Dendritic cells pulsed with CEA peptide induce CEA-specific CTL with restricted TCR repertoire J Immunol 1998 21: 17–26

    CAS  Google Scholar 

  23. Navabi H, Jasani B, Adams M, et al . Generation of in vitro autologous human cytotoxic T-cell response to E7 and her-2/neu oncogene products using ex-vivo peptide loaded dendritic cells Adv Exp Med Biol 1997 417: 583–589

    Article  CAS  Google Scholar 

  24. Specht JM, Wang G, Do MT, et al . Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases J Exp Med 1997 186: 1213–1221

    Article  CAS  Google Scholar 

  25. Toujas L, Delcros JG, Diez E, et al . Human monocyte-derived macrophages and dendritic cells are comparably effective in vitro in presenting HLA Class I–restricted exogenous peptides Immunology 1997 91: 635–642

    Article  CAS  Google Scholar 

  26. Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ . Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  27. Tsai V, Southwood S, Sidney J, et al . Identification of subdominant CTL epitopes of the gp100 melanoma-associated tumor antigen by primary in vitro immunization with peptide-pulsed dendritic cells J Immunol 1997 158: 1796–1802

    CAS  PubMed  Google Scholar 

  28. Hermans IF, Daish A, Moroni-Rawson P, Ronchese F . Tumor-peptide–pulsed dendritic cells isolated from spleen or cultured in vitro from bone marrow precursors can provide protection against tumor challenge Can Immunol, Immunother 1997 44: 341–347

    Article  CAS  Google Scholar 

  29. Reeves ME, Royal RE, Lam JS, Rosenberg SA, Hwu P . Retroviral transduction of human dendritic cells with a tumor-associated antigen gene Can J Res 1996 56: 5672–5677

    CAS  Google Scholar 

  30. Smith CA, Woodruff LS, Kitchingman GR, Rooney CM . Adenovirus-pulsed dendritic cells stimulate human virus-specific T-cell responses in vitro J Virol 1996 70: 6733–6740

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Elsas A, Van der Burg SH, van der Minne CE, et al . Peptide-pulsed dendritic cells induce tumoricidal cytotoxic T lymphocytes from healthy donors against stably HLA-A0201–binding peptides from the melan-a/mart-1 self antigen Eur J Immunol 1996 26: 1683–1689

    Article  CAS  Google Scholar 

  32. Bianchi R, Grohmann U, Belladonna ML, et al . IL-12 is both required and sufficient for initiating T cell reactivity to a class I–restricted tumor peptide (p815ab) following transfer of p815ab-pulsed dendritic cells J Immunol 1996 157: 1589–1597

    CAS  PubMed  Google Scholar 

  33. Mjaaland S, Fossum S . Dendritic leucocytes pulsed with monoclonal antibody–hapten conjugates elicit vigorous primary humoral responses in vivo Scand J Immunol 1995 41: 305–308

    Article  CAS  Google Scholar 

  34. Santin AD, Hermonat PL, Ravaggi A, et al . Generation of an MHC class I restricted cytotoxic T cell response against autologous cervical cancer tumor cells by lipofection of synthetic human papillomavirus types 16 and 18 E7 protein into primary dendritic cells J Virol 1999 73: 5402–5410

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Santin AD, Hermonat PL, Ravaggi A, et al . Development, characterization, and distribution of adoptively transferred peripheral blood lymphocytes primed by human papillomavirus E7 Eur J Gynaecol Oncol 2000 21: 17–23

    CAS  PubMed  Google Scholar 

  36. Smotkin D, Wettstein FO . The major human papillomavirus protein in cervical cancers is a cytoplasmic phosphoprotein J Virol 1987 61: 1686–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Santin AD, Mane M, et al . Transduction and utility of the granulocyte macrophage–colony stimulating factor gene into monocytes and dendritic cells by adeno-associated virus J Interferon Cytokine Res 2000 20: 21–30

    Article  Google Scholar 

  38. Hermonat PL, Muzyczka N . Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells Proc Natl Acad Sci USA 1984 81: 6466–6470

    Article  CAS  Google Scholar 

  39. Laface D, Hermonat PL, Wakeland EK, Peck AB . Gene transfer into hematopoietic progenitor cells mediated by an adeno-associated virus vector Virology 1988 162: 483–486

    Article  CAS  Google Scholar 

  40. Zhou SZ, Broxmeyer HE, Cooper S, Harrington MA, Srivastava A . Adeno-associated virus 2–mediated gene transfer in murine hematopoietic progenitor cells Exp Hematol 1993 21: 928–933

    CAS  PubMed  Google Scholar 

  41. Zhou SZ, Cooper S, Kang LY, et al . Adeno-associated virus 2–mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood J Exp Med 1994 179: 1867–1875

    Article  CAS  Google Scholar 

  42. Goodman S, Xiao X, Donahue RE, et al . Recombinant adeno-associated virus–mediated gene transfer into hematopoietic progenitor cells Blood 1994 84: 1492–1500

    CAS  PubMed  Google Scholar 

  43. Podsakoff G, Wong KK Jr, Chatterjee S . Efficient gene transfer into nondividing cells by adeno-associated virus–based vectors J Virol 1994 74: 5656–5666

    Google Scholar 

  44. Chiorini JA, Wendtner CM, Urcelay E, Safer B, Hallek M, Kotin RM . High-efficiency transfer of the T cell co-stimulatory molecule B7-2 to lymphoid cells using high-titer recombinant adeno-associated virus vectors Hum Gene Ther 1995 6: 1531–1541

    Article  CAS  Google Scholar 

  45. Lubovy M, McCune S, Dong JY, Prchal JF, Townes TM, Prchal JT . Stable transduction of recombinant adeno-associated virus into hematopoietic stem cells from normal and sickle cell patients Biol Blood Marrow Transplant 1996 2: 24–30

    CAS  PubMed  Google Scholar 

  46. Fisher-Adams G, Wong KK Jr, Podsakoff G, Forman SJ, Chatterjee S . Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction Blood 1996 88: 492–504

    CAS  PubMed  Google Scholar 

  47. Ponnazhagan S, Mukherjee P, Wang XS, et al . Adeno-associated virus type 2–mediated transduction in primary human bone marrow–derived Cd34+ hematopoietic progenitor cells: donor variation and correlation of transgene expression with cellular differentiation J Virol 1997 71: 8262–8267

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ponnazhagan S, Yoder MC, Srivastava A . Adeno-associated virus type 2–mediated transduction of murine hematopoietic cells with long-term repopulating ability and sustained expression of a human globin gene in vivo J Virol 1997 71: 3098–3104

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hermonat PL, Quirk JG, Bishop BM, Han L . Packaging capacity of adeno-associated virus and the potential for wild type-plus AAV gene therapy vectors FEBS Lett 1997 407: 78–84

    Article  CAS  Google Scholar 

  50. Auricchio A, Hildinger M, O'Connor E, Gao G-P, Wilson JM . Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column Hum Gene Ther 2001 12: 71–76

    Article  CAS  Google Scholar 

  51. Pala P, Verhoef A, Lamb JR, Openshaw PJ . Single cell analysis of cytokine expression kinetics by human CD4+ T-cell clones during activation or tolerance induction Immunology 2000 100: 209–216

    Article  CAS  Google Scholar 

  52. Bennet SRM, Carbone FR, Karamalis F, Miller JFAP, Health WR . Induction of CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help J Exp Med 1997 186: 65–70

    Article  Google Scholar 

  53. Clerici M, Shearer GM, Clerici E . Cytokine dysregulation in invasive cervical carcinoma and other human neoplasias: time to consider the Th1/Th2 paradigm J Natl Can Inst 1997 90: 261–263

    Article  Google Scholar 

  54. Nitta T, Yagita H, Sato K, Okumura K . Involvement of CD56 (NKh-1/leu-19 antigen) as an adhesion molecule in natural killer–target cell interaction J Exp Med 1989 170: 1757–1761

    Article  CAS  Google Scholar 

  55. Hilders CGJM, Ras L, van Eendenburg JDH, Nooyen Y, Fleuoren GJ . Isolation and characterization of tumor-infiltrating lymphocytes from cervical cancer Int J Cancer 1994 57: 805–813

    Article  CAS  Google Scholar 

  56. Nonacs R, Humborg C, Tam JP, Steiman RM . Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific cytolytic T lymphocytes J Exp Med 1992 176: 519–529

    Article  CAS  Google Scholar 

  57. Hoggan MD, Thomas G, Johnson FB . Continuous carriage of adenovirus associated virus genome in cell culture in the absence of helper adenovirus In Proceedings of the Fourth Lepetite Colloquium, Cocoyac, Mexico Amsterdam: North-Holland 1972 pp. 243–249

  58. Cheung AKM, Hoggan MD, Hauswirth WW, Berns KI . Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells J Virol 1980 33: 739–746

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Laughlin CA, Cardellichio CB, Coon HC . Latent infection of kb cells with adeno-associated virus type 2 J Virol 1986 60: 515–522

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Masten BJ, Yates JL, Pollard Koga AM, Lipscomb ME . Characterization of accessory molecules in murine lung dendritic cell function: roles of CD80, CD86, CD54, and CD40L Am J Respir Cell Mol Biol 1997 16: 335–342

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Drs. Yong Liu and Maurizio Chiriva-Internati contributed equally to this work. We acknowledge the excellent assistance provided by Teri Fields and Rena Sheffer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L Hermonat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Chiriva-Internati, M., Grizzi, F. et al. Rapid induction of cytotoxic T-cell response against cervical cancer cells by human papillomavirus type 16 E6 antigen gene delivery into human dendritic cells by an adeno-associated virus vector. Cancer Gene Ther 8, 948–957 (2001). https://doi.org/10.1038/sj.cgt.7700391

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700391

Keywords

This article is cited by

Search

Quick links