Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus-mediated wt- p16 reintroduction induces cell cycle arrest or apoptosis in pancreatic cancer

Abstract

Pancreatic cancer has long carried poor prognosis. The development of new therapeutic approaches is particularly urgent. Inactivation of the tumor-suppressor gene p16 INK4a/CDKN2, a specific inhibitor of the cyclin-dependent kinases CDK4 and CDK6, is the most common genetic alteration in human pancreatic cancer, making it an ideal target for gene replacement. Here we transfected tumor cells using a recombinant adenovirus containing the wt- p16 cDNA (Ad5RSV- p16 ). The overexpression of p16 decreased cell proliferation in all four human pancreatic tumor cell lines (NP-9, NP-18, NP-29, and NP-31). However, G1 arrest and senescence were observed in only three. In contrast, the fourth (NP-18) showed a significant increase in apoptosis. This differential behavior may be related to the differences found in the expression level of E2F-1. Experiments on subcutaneous pancreatic xenografts demonstrated the effectiveness of p16 in the inhibition of pancreatic tumor growth in vivo. Taken together, our results indicate that approaches involving p16 replacement are promising in pancreatic cancer treatment. Cancer Gene Therapy (2001) 8, 740–750

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA . Cancer statistics, 1998 CA Cancer J Clin 1998 48: 6–29

    CAS  PubMed  Google Scholar 

  2. Evans DB, Abbruzzese JL, Rich TA . Cancer of the pancreas In: De Vita VT, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology. 5th ed Philadelphia: Lippincott-Raven 1997 1054–1081

  3. Guzburg WH, Salmons B . Novel clinical strategies for the treatment of pancreatic carcinoma Trends Mol Med 2001 7: 30–37

    Google Scholar 

  4. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997 89: 21–39

    CAS  PubMed  Google Scholar 

  5. Gómez-Navarro J, Curiel DT, Douglas JT . Gene therapy for cancer Eur J Cancer 1999 35: (14) 2039–2057

    PubMed  Google Scholar 

  6. Vile RG, Russell SJ, Lemoine NR . Cancer gene therapy: hard lessons and new courses Gene Ther 2000 7: 2–8

    CAS  PubMed  Google Scholar 

  7. King KL, Cidlowski JA . Cell cycle and apoptosis: common pathways to life and death J Cell Biochem 1995 8: 175–185

    Google Scholar 

  8. Culver KW, Blaese RM . Gene therapy for cancer Trends Genet 1994 10: 174–178

    CAS  PubMed  Google Scholar 

  9. Favrot M, Coll JL, Louis N, Negoescu A . Cell death and cancer: replacement of apoptotic genes and inactivation of death suppressor genes in therapy Gene Ther 1998 5: 728–739

    CAS  PubMed  Google Scholar 

  10. Sherr CJ . The Pezcoller lecture: cancer cell cycles revisited Cancer Res 2000 60: 3689–3695

    CAS  PubMed  Google Scholar 

  11. Chin L, Pomerantz J, DePinho RA . The INK4a/ARF tumor suppressor: one gene–two products–two pathways Trends Biochem Sci 1998 23: 291–296

    CAS  PubMed  Google Scholar 

  12. Yap DBS, Hsieb JK, Chan FSG, Lu X . Mdm-2: a bridge over the two tumour suppressors, p53 and pRb Oncogene 1999 18: 7681–7689

    CAS  PubMed  Google Scholar 

  13. Weinberg RA . The retinoblastoma protein and cell cycle control Cell 1995 81: 323–330

    CAS  PubMed  Google Scholar 

  14. Lundberg AS, Weinberg RA . Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin–cdk complexes Mol Cell Biol 1998 18: (2) 753–761

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Graña X, Reddy EP . Cell cycle control in mammalian cells: role of cyclins, cyclin-dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs) Oncogene 1995 11: 211–219

    PubMed  Google Scholar 

  16. Sherr CJ, Roberts M . CDK inhibitors: positive and negative regulators of G1-phase progression Genes & Dev 1999 13: 1501–1512

    CAS  Google Scholar 

  17. Graña X, Garriga J, Mayol X . Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth Oncogene 1998 17: 3365–3383

    PubMed  Google Scholar 

  18. Müller H, Bracken AP, Vernell R, et al . E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis Genes Dev 2001 15: 267–285

    PubMed  PubMed Central  Google Scholar 

  19. Saphiro GI, Rollins BJ . p16INK4A as a human tumor suppressor Biochim Biophys Acta 1996 1242: 165–169

    Google Scholar 

  20. Caldas C, Hahn SA, da Costa LT, et al . Frequent somatic mutations and homozygous deletions of the MTS1 gene in pancreatic adenocarcinoma Nat Genet 1994 8: 27–32

    CAS  PubMed  Google Scholar 

  21. Serrano M, Hannon GJ, Beach D . A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4 Nature 1993 366: 704–707

    CAS  PubMed  Google Scholar 

  22. Lukas J, Parry D, Aagaard L, et al . Retinoblastoma-protein-dependent cell cycle inhibition by the tumour suppressor p16 Nature 1995 375: 503–506

    CAS  PubMed  Google Scholar 

  23. Alcorta DA, Xiong Y, Phelps D, et al . Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts Proc Natl Acad Sci USA 1996 93: 13742–13747

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Robles SJ, Adami GR . Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts Oncogene 1998 16: 1113–1123

    CAS  PubMed  Google Scholar 

  25. Serrano M, Gómez-Lahoz RA, DePinho RA, et al . Inhibition of ras-induced proliferation and cellular transformation by p16INK4A Science 1996 267: 249–252

    Google Scholar 

  26. Serrano M, Lin AW, McCurrach ME, et al . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16Ink4a Cell 1997 88: 593–602

    CAS  PubMed  Google Scholar 

  27. Rocco JW, Li D, Liggett WH, et al . p16INK4A adenovirus-mediated gene therapy for human head and neck squamous cell cancer Clin Cancer Res 1998 4: 1697–1704

    CAS  PubMed  Google Scholar 

  28. Craig C, Kim M, Ohri E, et al . Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells Oncogene 1998 16: 265–272

    CAS  PubMed  Google Scholar 

  29. Uhrbom D, Nister M, Westermark B . Induction of senescence in human malignant glioma cells by p16INK4A Oncogene 1997 15: 505–514

    CAS  PubMed  Google Scholar 

  30. Steiner MS, Zhang Y, Farooq F, et al . Adenoviral vector containing wild-type p16 suppresses prostate cancer growth and prolongs survival by inducing cell senescence Cancer Gene Ther 2000 7: (3) 360–372

    CAS  PubMed  Google Scholar 

  31. Fueyo J, Gómez-Manzano C, Yung WKA, et al . Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells Oncogene 1996 12: 103–110

    CAS  PubMed  Google Scholar 

  32. Harada H, Nakagawa K, Iwata S, et al . Restoration of wild-type p16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas Cancer Res 1999 59: 3783–3789

    CAS  PubMed  Google Scholar 

  33. Chintala SK, Fueyo J, Gómez-Manzano C, et al . Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro Oncogene 1997 15: 2049–2057

    CAS  PubMed  Google Scholar 

  34. Wieser RJ, Faust D, Dietrich C, Oesch F . p16INK4 mediates contact inhibition of growth Oncogene 1999 18: 277–281

    CAS  PubMed  Google Scholar 

  35. Fahraeus R, Lane DP . The p16INK4a tumour suppressor protein inhibits alpha-v-beta-3 integrin–mediated cell spreading on vitronectin by blocking PKC-dependent localization of alpha-v-beta-3 to focal contacts EMBO J 1999 18: 2106–2118

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schreiber M, Muller WJ, Singh G, Graham FL . Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p18INK4C, p19INK4D, p21WAF1/CIP1, and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity Oncogene 1999 18: 1663–1676

    CAS  PubMed  Google Scholar 

  37. Frizelle SP, Grim J, Zhou J, et al . Re-expression of p16INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression Oncogene 1998 16: 3087–3095

    CAS  PubMed  Google Scholar 

  38. Naruse I, Heikese I, Heike Y, Hama S, Mori M, Saijo N . High concentrations of recombinant adenovirus expressing p16 gene induces apoptosis in lung cancer lines Anticancer Res 1998 18: 4275–4282

    CAS  PubMed  Google Scholar 

  39. Ghaaneh P, Grenhalf W, Humphreys M, et al . Adenovirus-mediated transfer of p53 and p16INK4a results in pancreatic cancer regression in vitro and in vivo Gene Ther 2001 8: 199–208

    Google Scholar 

  40. Villanueva A, García C, Paules AB, et al . Disruption of the antiproliferative TGF-β signaling pathways in human pancreatic cells Oncogene 1998 17: 1969–1978

    CAS  PubMed  Google Scholar 

  41. Cascalló M, Mercadé E, Lluís F, et al . Genetic background determines the response to adenovirus-mediated wt- p53 expression in human pancreatic tumor cells Cancer Gene Ther 1999 6: 428–436

    PubMed  Google Scholar 

  42. Darzynkiewicz Z, Li X, Gong J, Hara S, Traganos F . Analysis of cell death by flow cytometry In: Studzinski GP, ed. Cell Growth and Apoptosis: A Practical Approach, 1st ed NY: Oxford Univ. Press 1995 143–167

  43. Dimri GP, Lee X, Basile G, et al . A biomarker that identifies senescent human cells in culture and aging skin in vivo Proc Natl Acad Sci USA 1995 92: 9363–9367

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cascalló M, Calbó J, Gelpí JLl, Mazo A . Modulation of drug cytotoxicity by reintroduction of wild-type p53 gene (Ad5CMV-p53) in human pancreatic cancer Cancer Gene Ther 2000 7: 545–556

    PubMed  Google Scholar 

  45. Becker TC, Noel RJ, Coats WS, et al . Use of recombinant adenovirus for metabolic engineering of mammalian cells Methods Cell Biol 1994 5: 161–189

    Google Scholar 

  46. Bramson JL, Hitt M, Gauldie J, Graham FL . Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector Gene Ther 1997 4: 1069–1076

    CAS  PubMed  Google Scholar 

  47. Humphreys M, Greenhalf W, Neoptolemos JP, Ghaneh P . The potential for gene therapy in pancreatic cancer Int J Pancreatol 1999 26: 5–21

    CAS  PubMed  Google Scholar 

  48. Peng KW . Strategies for targeting therapeutic gene delivery Mol Med Today 1999 5: 448–453

    CAS  PubMed  Google Scholar 

  49. Arap W, Nishikawa R, Furnari FB, Cavenee WK, et al . Replacement of the p16/CDKN2 gene suppresses human glioma cell growth Cancer Res 1995 55: 1351–1354

    CAS  PubMed  Google Scholar 

  50. Bartek J, Bartkova J, Lukas J . The retinoblastoma protein pathway in cell cycle control and cancer Exp Cell Res 1997 237: 1–6

    CAS  PubMed  Google Scholar 

  51. Sandig K, Brandt K, Herwig S, et al . Adenovirally transferred p16 and p53 genes cooperate to induce apoptotic tumor cell death Nat Med 1997 3: 313–319

    CAS  PubMed  Google Scholar 

  52. Kataoka M, Wiehle S, Spitz F, et al . Down-regulation of bcl-2 is associated with p16INK4-mediated apoptosis in non-small cell lung cancer cells Oncogene 2000 19: 1589–1595

    CAS  PubMed  Google Scholar 

  53. Fang X, Jin X, Xu HJ, et al . Expression of p16 induces transcriptional downregulation of the RB gene Oncogene 1998 16: 1–8

    CAS  PubMed  Google Scholar 

  54. Holmberg C, Helin K, Sehested M, Karlström O . E2F-1–induced p53-independent apoptosis in transgenic mice Oncogene 1998 17: 143–155

    CAS  PubMed  Google Scholar 

  55. Steiner M, Wang Y, Zhang Y, et al . p16/MTS1/INK4A suppresses prostate cancer by both pRb-dependent and -independent pathways Oncogene 2000 19: 1297–1306

    CAS  PubMed  Google Scholar 

  56. Plath T, Detjen K, Welzel M, et al . A novel function for the tumor suppressor p16INK4a: induction of anoikis via upregulation of the α5β1 fibronectin receptor J Cell Biol 2000 150: 1467–1477

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rizk NP, Chang MY, El-Kouri C, et al . The evaluation of adenoviral p53-mediated bystander effect in gene therapy of cancer Cancer Gene Ther 1999 6: (4) 1–301

    Google Scholar 

Download references

Acknowledgements

This research was supported by Comisión Interministerial de Ciencia y Tecnología, Grant SAF98/042. J. C. is a recipient of predoctoral fellowship from Ministerio de Educación y Cultura. We acknowledge the help received from Jaume Comas, who is in charge of flow cytometry section in the Serveis Científico-Tècnics de la Universitat de Barcelona. We thank Agnès Figueras and Meritxell Carrió for their technical assistance, Ignasi Catalán for the statistical analysis and Robin Rycroft for his editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adela Mazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calbó, J., Marotta, M., Cascalló, M. et al. Adenovirus-mediated wt- p16 reintroduction induces cell cycle arrest or apoptosis in pancreatic cancer. Cancer Gene Ther 8, 740–750 (2001). https://doi.org/10.1038/sj.cgt.7700374

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700374

Keywords

This article is cited by

Search

Quick links