Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene delivery by attenuated Salmonella typhimurium : Comparing the efficacy of helper versus cytotoxic T cell priming in tumor vaccination

Abstract

Using the murine B16F1 melanoma, we compared a CTL– versus helper T cell (TH)–directed vaccination approach. Mice were either orally vaccinated with attenuated Salmonella typhimurium (SL) or subcutaneously with dendritic cells (DCs) loaded with gp100 peptides predicted to bind to H2-Kb/H2-Db molecules. SL were transformed with the murine gp100 cDNA (SL-gp100) or with a fusion construct of gp100 and a fragment of invariant chain cDNA (SL-gp100/Ii). Transcription of these genes in vivo has been readily observed in monocytes and DC. Retardation of B16F1 growth was more efficiently achieved by vaccination with SL-gp100 than with DC. Vaccination with SL-gp100/Ii aiming at preferential presentation by MHC II molecules provided some further improvement due to a stronger expansion of TH and CTL. The importance of help was further sustained by a prolongation of the survival time when mice concomitantly received IL2. Notably, prophylactic, compared to therapeutic, vaccination had no additional impact on survival time/rate. This was due to a striking decrease in frequencies of gp100-specific TH, CTL, and cytokine-expressing cells during tumor growth. Thus, the efficacy of vaccination was limited by tumor-induced immunosuppression. Our data demonstrate the oral route of vaccination via Salmonella as a most convenient transfer regimen and confirm the superiority of protocols aiming at preferential activation of TH. Cancer Gene Therapy (2001) 8, 599–611

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Van denEynde BJ, Boon T . Tumor antigens recognized by T lymphocytes Int J Clin Lab Res 1997 27: 81–86

    Article  CAS  Google Scholar 

  2. Bremers AJ, Parmiani G . Immunology and immunotherapy of human cancer: present concepts and clinical developments Crit Rev Oncol Hematol 2000 34: 1–25

    Article  CAS  PubMed  Google Scholar 

  3. Schreurs MW, deBoer AJ, Schmidt A, Figdor CG, Adema GJ . Cloning, expression and tissue distribution of the murine homologue of the melanocyte lineage-specific antigen gp100 Melanoma Res 1997 7: 463–470

    Article  CAS  PubMed  Google Scholar 

  4. Wagner SN, Wagner C, Schultewolter T, Goos M . Analysis of Pmel17/gp100 expression in primary human tissue specimens: implications for melanoma immuno- and genetherapy Cancer Immunol Immunother 1997 44: 239–247

    Article  CAS  PubMed  Google Scholar 

  5. Jäger E, Ringhoffer M, Arand M, et al . Cytolytic T cell reactivity against melanoma-associated differentiation antigens in peripheral blood of melanoma patients and healthy individuals Melanoma Res 1996 6: 419–425

    Article  PubMed  Google Scholar 

  6. Kawakami Y, Rosenberg SA . Immunobiology of human melanoma antigens MART-1 and gp100 and their use for immunogene therapy Int Rev Immunol 1997 14: 173–192

    Article  CAS  PubMed  Google Scholar 

  7. Overwijk WW, Lee DS, Surman DR, et al . Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes Proc Natl Acad Sci USA 1999 96: 2982–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawakami Y . New cancer therapy by immunomanipulation: development of immunotherapy for human melanomas as a model system Cornea 2000 19: S2–S6

    Article  CAS  PubMed  Google Scholar 

  9. Maeurer MJ, Storkus WJ, Kirkwood JM, Lotze MT . New treatment options for patients with melanoma: review of melanoma-derived T cell epitope-based peptide vaccines Melanoma Res 1996 6: 11–24

    Article  CAS  PubMed  Google Scholar 

  10. Jäger E, Ringhoffer M, Dienes HP, et al . Granulocyte–macrophage colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo Int J Cancer 1996 67: 54–62

    Article  PubMed  Google Scholar 

  11. Chen CH, Wu TC . Experimental vaccine strategies for cancer immunotherapy J Biomed Sci 1998 5: 231–252

    Article  CAS  PubMed  Google Scholar 

  12. Nestle FO, Alijagic S, Gilliet M, et al . Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells Nat Med 1998 4: 328–332

    Article  CAS  PubMed  Google Scholar 

  13. Kaplan JM, Yu Q, Piraino ST, et al . Induction of antitumor immunity with dendritic cells transduced with adenovirus vector encoding endogenous tumor-associated antigens J Immunol 1999 163: 699–707

    CAS  PubMed  Google Scholar 

  14. Yang S, Vervaert CE, Burch J, Grichnik J, Seigler HF, Darrow TL . Murine dendritic cells transfected with human gp100 elicit both antigen-specific CD8(+) and CD4(+) T-cell responses and are more effective than DNA vaccines at generating antitumor immunity Int J Cancer 1999 83: 532–540

    Article  CAS  PubMed  Google Scholar 

  15. Wan Y, Emtage P, Zhu Q, et al . Enhanced immune response to the melanoma antigen gp100 using recombinant adenovirus-transduced dendritic cells Cell Immunol 1999 198: 131–138

    Article  CAS  PubMed  Google Scholar 

  16. Schreurs MW, deBoer AJ, Figdor CG, Adema GJ . Genetic vaccination against the melanocyte lineage-specific antigen gp100 induces cytotoxic T lymphocyte–mediated tumor protection Cancer Res 1998 58: 2509–2514

    CAS  PubMed  Google Scholar 

  17. Overwijk WW, Tsung A, Irvine KR, et al . Gp100/pmel17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand J Exp Med 1998 188: 277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhia Y, Yang JC, Spiess P, et al . Cloning and characterization of the genes encoding the murine homologues of the human antigens MART1 and gp100 J Immunother 1997 20: 15–25

    Article  Google Scholar 

  19. Xiang R, Lode HN, Chao TH, et al . An autologous oral DNA vaccine protects against murine melanoma Proc Natl Acad Sci USA 2000 97: 5492–5497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sinkovics JG, Horvath JC . Vaccination against human cancer Int J Oncol 2000 16: 81–96

    CAS  PubMed  Google Scholar 

  21. Hoffman DM, Gitlitz BJ, Belldegrun A, Figlin RA . Adoptive cellular therapy Semin Oncol 2000 27: 221–233

    CAS  PubMed  Google Scholar 

  22. Timmerman JM, Levy R . Dendritic cell vaccines for cancer immunotherapy Annu Rev Med 1999 50: 507–529

    Article  CAS  PubMed  Google Scholar 

  23. Tarte K, Klein B . Dendritic cell–based vaccine: a promising approach for cancer immunotherapy Leukemia 1999 13: 653–663

    Article  CAS  PubMed  Google Scholar 

  24. Bakker AB, Marland G, deBoer AJ, et al . Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cells in vitro Cancer Res 1995 55: 5330–5334

    CAS  PubMed  Google Scholar 

  25. DeBruijn ML, Schuurhuis DH, Vierboom MP, et al . Immunization with human papillomavirus type 16 (HPV16) oncoprotein-loaded dendritic cells as well as protein in adjuvant induces MHC class I–restricted protection to HPV16-induced tumor cells Cancer Res 1998 58: 724–731

    CAS  Google Scholar 

  26. Holtl L, Rieser C, Papesh C, et al . Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen-pulsed dendritic cells J Urol 1999 161: 777–782

    Article  CAS  PubMed  Google Scholar 

  27. Kugler A, Stuhler G, Walden P, et al . Regression of human metastatic renal cell carcinoma after vaccination with tumor cell–dendritic cell hybrids Nat Med 2000 6: 332–336

    Article  CAS  PubMed  Google Scholar 

  28. Schoenberger SP, Toes REM, van derVoort EIH, Offringa R, Melief CJM . T cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions Nature 1998 393: 480–483

    Article  CAS  PubMed  Google Scholar 

  29. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ . Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors J Exp Med 1998 187: 693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ostrand-Rosenberg S, Thakur A, Clements V . Rejection of mouse sarcoma after transfection of MHC class II genes J Immunol 1990 144: 4068–4071

    CAS  PubMed  Google Scholar 

  31. Bennett SRM, Carbone FR, Karamalis F, Flavell RA, Miller JFAP, Heath WR . Help for cytotoxic T cell responses is mediated by CD40 signalling Nature 1998 393: 478–480

    Article  CAS  PubMed  Google Scholar 

  32. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H . The central role of CD4(+) T cells in the antitumor immune response J Exp Med 1998 188: 2357–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baxevanis CN, Voutsas IF, Tsitsilonis OE, Gritzapis AD, Sotiriadou R, Papamichail M . Tumor-specific CD4+ T lymphocytes from cancer patients are required for optimal induction of cytotoxic T cells against the autologous tumor J Immunol 2000 164: 3902–3912

    Article  CAS  PubMed  Google Scholar 

  34. Shen Y, Fujimoto S . A tumor-specific TH2 clone initiating tumor rejection via primed CD8+ cytotoxic T lymphocyte activation in mice Cancer Res 1996 56: 5005–5011

    CAS  PubMed  Google Scholar 

  35. Grohmann U, Fioretti MC, Bianchi R, et al . Dendritic cell, interleukin-12 and CD4+ lymphocytes in the initiation of class I restricted reactivity to a tumor/self peptide Crit Rev Immunol 1998 18: 87–98

    Article  CAS  PubMed  Google Scholar 

  36. Unanue ER . Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response Immunol Rev 1997 158: 11–25

    Article  CAS  PubMed  Google Scholar 

  37. Romagnani S . Induction of TH1 and TH2 responses: a key role for the “natural” immune response? Immunol Today 1992 13: 379–381

    Article  CAS  PubMed  Google Scholar 

  38. Gilboa E, Nair SK, Lyerly HK . Immunotherapy of cancer with dendritic cell–based vaccines Cancer Immunol Immunother 1998 46: 82–87

    Article  CAS  PubMed  Google Scholar 

  39. Zhou WZ, Hoon DS, Hunag SK, et al . RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization Hum Gene Ther 1999 10: 2719–2724

    Article  CAS  PubMed  Google Scholar 

  40. Leitner WW, Ying H, Restifo NP . DNA- and RNA-based vaccines: principles, progress and prospects Vaccine 1999 18: 765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robinson HL . DNA vaccines: basic mechanism and immune responses Int J Mol Med 1999 4: 549–555

    CAS  PubMed  Google Scholar 

  42. Fynan EF, Webster RG, Fuller DH, Haynes JR . DNA vaccines: protective immunization by parenteral, mucosal and gene-gun inoculations Proc Natl Acad Sci USA 1993 90: 11478–11482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hwu P . Current challenges in cancer gene therapy J Intern Med, Suppl 1997 740: 109–114

    Article  CAS  Google Scholar 

  44. Lee DJ, Corr M, Carson DA . Control of immune responses by gene immunization Ann Med 1998 30: 460–468

    Article  CAS  PubMed  Google Scholar 

  45. Decker T, Schneller F, Sparwasser T, et al . Immunostimulatory CpG oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells Blood 2000 95: 999–1006

    CAS  PubMed  Google Scholar 

  46. Sirard JC, Niedergang F, Krahenbuhl JP . Live attenuated Salmonella : a paradigm of mucosal vaccines Immunol Rev 1999 171: 5–26

    Article  CAS  PubMed  Google Scholar 

  47. Pan ZK, Weiskirch LM, Paterson Y . Regression of established B16F10 melanoma with a recombinant Listeria monocytogenes vaccine Cancer Res 1999 59: 5264–5269

    CAS  PubMed  Google Scholar 

  48. Medina E, Guzman CA, Staender LH, Colombo MP, Paglia P . Salmonella vaccine carrier strains: effective delivery system to trigger antitumor immunity by oral route Eur J Immunol 1999 29: 693–699

    Article  CAS  PubMed  Google Scholar 

  49. Darji A, Guzman CA, Gerstel B, et al . Oral somatic transgene vaccination using attenuated S. typhimurium Cell 1997 91: 765–775

    Article  CAS  PubMed  Google Scholar 

  50. Paglia P, Arioli I, Frahm N, Chakraborty T, Colombo MP, Guzman CA . The defined attenuated Listeria monocytogenes delta mp12 mutant is an effective oral vaccine carrier to trigger a long-lasting immune response against a mouse fibrosarcoma Eur J Immunol 1997 27: 1570–1575

    Article  CAS  PubMed  Google Scholar 

  51. Odorizzi CG, Trowbridge IS, Xue L, Hopkins CR, Davis CD, Collawn JF . Sorting signals in the MHC class II invariant chain cytoplasmic tail and transmembrane region determine trafficking to an endocytic processing compartment J Cell Biol 1994 126: 317–330

    Article  CAS  PubMed  Google Scholar 

  52. Sanderson S, Frauwirth K, Shastri N . Expression of endogenous peptide–major histocompatibility complex class II complexes derived from invariant chain–antigen fusion proteins Proc Natl Acad Sci USA 1995 92: 7217–7221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Malcherek G, Wirblich C, Willcox N, Rammensee HG, Trowsdale J, Melms A . MHC class II–associated invariant chain peptide replacement by T cell epitopes: engineered invariant chain as a vehicle for directed and enhanced MHC class II antigen processing and presentation Eur J Immunol 1998 28: 1524–1533

    Article  CAS  PubMed  Google Scholar 

  54. Sponaas A, Carstens C, Koch N . C-terminal extension of the MHC class II–associated invariant chain by an antigenic sequence triggers activation of naive T cells Gene Ther 1999 6: 1826–1834

    Article  CAS  PubMed  Google Scholar 

  55. Fidler IJ . Biological behavior of malignant melanoma cells correlated to their survival in vivo Cancer Res 1975 35: 218–224

    CAS  PubMed  Google Scholar 

  56. Arnold B, Horstmann U, Kuon W, Burgert HG, Hämmerling GL, Kvist S . Alloreactive cytolytic T cell clones preferentially recognize conformational determinants on histocompatibility antigens: analysis with genetically engineered hybrid antigens Proc Natl Acad Sci USA 1985 82: 7030–7035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koch N, Hämmerling GJ, Tada N, Kimura S, Hämmerling U . Cross-blocking studies with monoclonal antibodies against I-A molecules of haplotypes b, d and k Eur J Immunol 1982 12: 909–914

    Article  CAS  PubMed  Google Scholar 

  58. Hoiseth SK, Stocker BA . Aromatic-dependent Salmonella typhimurium are nonvirulent and effective as live vaccines Nature 1981 291: 238–239

    Article  CAS  PubMed  Google Scholar 

  59. Inaba K, Inaba M, Romani N, et al . Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor J Exp Med 1992 176: 1693–1702

    Article  CAS  PubMed  Google Scholar 

  60. Rammensee HG, Bachmann J, Emmrich NP, Bachor OA, Stevanovic S . SYFPEITHI: database for MHC ligands and peptide motifs Immunogenetics 1999 50: 213–219

    Article  CAS  PubMed  Google Scholar 

  61. Matzinger P . The JAM test. A simple assay for DNA fragmentation and cell death J Immunol Methods 1991 145: 185–192

    Article  CAS  PubMed  Google Scholar 

  62. Lefkovits I, Waldmann H . Limiting Dilution Analysis of Cells in the Immune System Cambridge: Cambridge University Press 1978

    Google Scholar 

  63. Tuting T, Steitz J, Bruck J, et al . Dendritic cell–based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective antimelanoma immunity J Gene Med 1999 1: 400–406

    Article  CAS  PubMed  Google Scholar 

  64. Yang S, Kittlesen D, Singluff CL, Vervaert CE, Seigler HF, Darrow TL . Dendritic cells infected with a vaccinia vector carrying the human gp100 gene simultaneously present multiple specificities and elicit high-affinity T cells reactive to multiple epitopes and restricted by HLA-A2 and -A3 J Immunol 2000 164: 4204–4211

    Article  CAS  PubMed  Google Scholar 

  65. Neefjes J . CIIV, MIIC and other compartments for MHC class II loading Eur J Immunol 1999 29: 1421–1425

    Article  CAS  PubMed  Google Scholar 

  66. Paglia P, Medina E, Arioli I, Guzman CA, Colombo MP . Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma Blood 1998 92: 3172–3176

    CAS  PubMed  Google Scholar 

  67. Touloukian CE, Leitner WW, Topalian SL, et al . Identification of a MHC class II–restricted human gp100 epitope using DR4-IE transgenic mice J Immunol 2000 164: 3535–3542

    Article  CAS  PubMed  Google Scholar 

  68. Manici S, Sturniolo T, Imro MA, et al . Melanoma cells present a MAGE-3 epitope to CD4+ cytotoxic T cells in association with histocompatibility leukocyte antigen DR11 J Exp Med 1999 189: 871–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zarour HM, Kirkwood JM, Kierstead LS, et al . Melan-A/MART-151–73 represents an immunogenic HLA-DR4–restricted epitope recognized by melanoma-reactive CD4+ T cells Proc Natl Acad Sci USA 1999 97: 400–405

    Article  Google Scholar 

  70. Cochlovius B, Stassar M, et al . In vitro and in vivo induction of a Th cell response towards peptides of the melanoma-associated glycoprotein 100 protein selected by the TEPITOPE program J Immunol 2000 165: 4731–4741

    Article  CAS  PubMed  Google Scholar 

  71. Cochlovius B, Linnebacher M, Zewe-Welschof M, Zöller M . Recombinant gp100 protein presented by dendritic cells elicits a T-helper response in vitro and in vivo Int J Cancer 1999 83: 547–554

    Article  CAS  PubMed  Google Scholar 

  72. Zöller M, Crist O . Comparative evaluation of DNA versus protein vaccination in tumor therapy J Immunol 2001 166: 3440–3450

    Article  PubMed  Google Scholar 

  73. Pawelec G, Rees RC, Kiessling R, et al . Cells and cytokines in immunotherapy and gene therapy of cancer Crit Rev Oncog 1999 10: 83–127

    CAS  PubMed  Google Scholar 

  74. Drexler I, Antunes E, Schmitz M, et al . Modified vaccinia virus Ankara for delivery of human tyrosinase as melanoma-associated antigen: induction of tyrosinase- and melanoma-specific human leukocyte antigen A*0201-restricted cytotoxic T cells in vitro and in vivo Cancer Res 1999 59: 4955–4963

    CAS  PubMed  Google Scholar 

  75. Wang J, Saffold S, Cao X, Krauss J, Chen W . Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell–tumor fusion vaccines J Immunol 1998 161: 5516–5524

    CAS  PubMed  Google Scholar 

  76. Rubartelli A, Poggi A, Zocchi MR . The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium Eur J Immunol 1997 27: 1893–1900

    Article  CAS  PubMed  Google Scholar 

  77. Takashima A, Morita A . Dendritic cells in genetic immunization J Leukocyte Biol 1999 66: 350–356

    Article  CAS  PubMed  Google Scholar 

  78. O'Connor SW, Bale WF . Accessibility of circulating immunoglobulin G to the extravascular compartment of solid rat tumors Cancer Res 1984 44: 3719–3723

    CAS  PubMed  Google Scholar 

  79. Penichet ML, Harvill ET, Morrison SL . Antibody–IL-2 fusion proteins: a novel strategy for immune protection Hum Antibodies 1997 8: 106–118

    Article  CAS  PubMed  Google Scholar 

  80. Christ O, Seiter S, Matzku S, Burger C, Zöller M . Efficacy of local versus systemic application of antibody cytokine fusion proteins in tumor therapy Clin Cancer Res 2001 7: 985–998

    CAS  PubMed  Google Scholar 

  81. Christ O, Matzku S, Burger C, Zöller M . IL2- and TNF–antibody fusion proteins induce different antitumor immune responses in vivo Clin Cancer Res 2001 7: 1385–1397

    CAS  PubMed  Google Scholar 

  82. Riker A, Cormier J, Panelli M, et al . Immune selection after antigen-specific immunotherapy of melanoma Surgery 1999 126: 112–120

    Article  CAS  PubMed  Google Scholar 

  83. Jäger E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A . Inverse relationship of melanocyte differentiation antigen expression in melanoma tissue and CD8+ cytotoxic T cell responses: evidence for immunoselection of antigen loss variants in vivo Int J Cancer 1996 66: 470–476

    Article  PubMed  Google Scholar 

  84. Maeurer MJ, Gollin SM, Storkus WJ, et al . Tumor escape from immune recognition: loss of HLA-A2 melanoma cell surface expression is associated with a complex rearrangement of the short arm of chromosome 6 Clin Cancer Res 1996 2: 641–652

    CAS  PubMed  Google Scholar 

  85. McCoy KD, Le Gros G . The role of CTLA-4 in the regulation of T cell immune responses Immunol Cell Biol 1999 77: 1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was support by the Mildred Scheel Stiftung für Krebsforschung (M.Z.). We greatly appreciate the technical help by S. Hummel and M. Vitacolonna. We cordially thank B. A. Stocker (Stanford, CA, USA) for providing us with attenuated S. typhimurium , F. Momburg (Deutsches Krebsforschungszentrum, Heidelberg) for the pFM332.1p41 vector, and S. Matzku, Merck, Darmstadt, Germany for helpful suggestions and discussion during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Zöller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weth, R., Christ, O., Stevanovic, S. et al. Gene delivery by attenuated Salmonella typhimurium : Comparing the efficacy of helper versus cytotoxic T cell priming in tumor vaccination. Cancer Gene Ther 8, 599–611 (2001). https://doi.org/10.1038/sj.cgt.7700352

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700352

Keywords

This article is cited by

Search

Quick links