A p75 tumor necrosis factor receptor-specific mutant of murine tumor necrosis factor α expressed from an adenovirus vector induces an antitumor response with reduced toxicity

Article metrics

Abstract

The toxic effects of tumor necrosis factor α (TNFα) have greatly limited its use in tumor therapy. Recently, clear evidence has been obtained linking the p55 TNF receptor (TNFR) to the induction of systemic toxicity. We have generated a p75 murine TNFR (mTNFR)-specific mutant of mTNFα (D142N-A144R), cloned this gene into a recombinant adenovirus vector (Ad-75), and studied its efficacy for tumor immunotherapy of a murine transgenic breast cancer model. Cell culture supernatants from Ad-75-transduced cells showed no cytotoxic activity on L929 cells, but retained the ability to induce proliferation of a murine T-cell line (CT6); this activity was not blocked by soluble p55 mTNFR. Furthermore, it was shown that the mutant form of mTNFα was able to coimmunoprecipitate only with the p75 mTNFR and not with the p55 mTNFR. Tumors injected with Ad-75 became necrotic, and mice injected with ≤1 × 109 plaque-forming units showed no mortality, whereas both wild-type murine and human TNF vectors induced lethality at doses of 1 and 5 × 108 plaque-forming units. All Ad-TNF vectors induced partial or permanent tumor regressions, with cured mice showing immune memory against the tumor. These results demonstrate that a p75 mTNFR agonist expressed from a recombinant adenovirus vector does not induce mortality at doses that cause tumor regression.

Author information

Correspondence to Frank L Graham.

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • Adenovirus
  • gene therapy
  • immunotherapy
  • tumor therapy
  • tumor necrosis factor α
  • tumor necrosis factor receptor.

Further reading