Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retroviral-mediated transfer of genes encoding interleukin-2 and interleukin-12 into fibroblasts increases host antitumor responsiveness

Abstract

The transfer of genes encoding cytokines into tumor cells has emerged as a new strategy to increase in vivo host reactivity to a variety of tumors. Because gene transfer into tumor cells cannot be easily applied in the clinical setting, we have developed an experimental model of gene transfer into fibroblasts and examined the capacity of these engineered cells to elicit an antitumor immune response. Interleukin-12 (IL-12) is a heterodimeric cytokine with pleiotropic activities presenting strong antitumor and antimetastatic effects in murine models. A bicistronic retroviral vector was constructed that contained the cDNAs encoding both chains (p40 and p35) of murine IL-12 separated by an internal ribosomal entry site sequence. Syngeneic cutaneous fibroblasts obtained from newborn mice and transduced to secrete either IL-12 or IL-2 were injected subcutaneously with B16F0 or B16F1 melanoma cells. The time of tumor occurrence and overall survival of mice were significantly prolonged when B16F1 cells were coinjected with cytokine-producing fibroblasts compared with B16F1 alone or B16F1 together with unmanipulated fibroblasts. Systemic effects were seen in the mice injected with either IL-2- or IL-12-secreting fibroblasts, with the highest proliferation capability and interferon-γ production observed in vitro from splenocytes from recipients of IL-2-secreting fibroblasts. Injection of IL-2-secreting fibroblasts or coinjection of IL-2- and IL-12-producing fibroblasts resulted in a significant increase of survival in the B16F0 model; in some cases, complete disease eradication was observed. These results suggest that cutaneous fibroblasts represent a target of choice for gene transfer and would be useful in the treatment of minimal residual disease in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govaerts, AS., Guillaume, T., André, M. et al. Retroviral-mediated transfer of genes encoding interleukin-2 and interleukin-12 into fibroblasts increases host antitumor responsiveness. Cancer Gene Ther 6, 447–455 (1999). https://doi.org/10.1038/sj.cgt.7700064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700064

Keywords

This article is cited by

Search

Quick links