Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Indoor ultrafine particle exposures and home heating systems: A cross-sectional survey of Canadian homes during the winter months

Abstract

Exposure to airborne particulate matter has a negative effect on respiratory health in both children and adults. Ultrafine particle (UFP) exposures are of particular concern owing to their enhanced ability to cause oxidative stress and inflammation in the lungs. In this investigation, our objective was to examine the contribution of home heating systems (electric baseboard heaters, wood stoves, forced-air oil/natural gas furnace) to indoor UFP exposures. We conducted a cross-sectional survey in 36 homes in the cities of Montréal, Québec, and Pembroke, Ontario. Real-time measures of indoor UFP concentrations were collected in each home for approximately 14 h, and an outdoor UFP measurement was collected outside each home before indoor sampling. A home-characteristic questionnaire was also administered, and air exchange rates were estimated using carbon dioxide as a tracer gas. Average UFP exposures of 21,594 cm−3 (95% confidence interval (CI): 14,014, 29,174) and 6660 cm−3 (95% CI: 4339, 8982) were observed for the evening (1600–2400) and overnight (2400–0800) hours, respectively. In an unadjusted comparison, overnight baseline UFP exposures were significantly greater in homes with electric baseboard heaters as compared to homes using forced-air oil or natural gas furnaces, and homes using wood stoves had significantly greater overnight baseline UFP exposures than homes using forced-air natural gas furnaces. However, in multivariate models, electric oven use (β=12,253 cm−3, 95% CI: 3524, 20,982), indoor relative humidity (β=1136 cm−3 %, 95% CI: 372, 1899), and indoor smoking (β=18,192 cm−3, 95% CI: 2073, 34,311) were the only significant determinants of mean indoor UFP exposure, whereas air exchange rate (β=4351 cm−3 h−1, 95% CI: 1507, 7195) and each 10,000 cm−3 increase in outdoor UFPs (β=811 cm−3, 95% CI: 244,1377) were the only significant determinants of overnight baseline UFP exposures. In general, our findings suggest that home heating systems are not important determinants of indoor UFP exposures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abt E., Suh H.H., Allen G., and Koutrakis P. Characterization of indoor particle sources: a study conducted in the metropolitan Boston Area. Environ Health Perspect 2000: 108: 35–44.

    Article  CAS  Google Scholar 

  • Afaq F., Abidi P., Matin R., and Rahman Q. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol 1998: 18: 307–312.

    Article  CAS  Google Scholar 

  • Afshari A., Matson U., and Ekberg L.E. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air 2005: 15: 141–150.

    Article  CAS  Google Scholar 

  • Asmi A.J., Pirjola L.H., and Kulmala M. A sectional model for submicron particles in indoor air. Scan J Work Environ Health 2004: 30 (suppl 2): 63–72.

    Google Scholar 

  • Bolch W.E., Farfan E.B., Huh C., and Huston T.E. Influence of parameter uncertainty within the ICRP66 respiratory tract model: particle deposition. Health Phys 2001: 81: 378–394.

    Article  CAS  Google Scholar 

  • Brown D.M., Wilson M.R., MacNee W., Stone V., and Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001: 175: 191–199.

    Article  CAS  Google Scholar 

  • Brown J.S., Zeman K.L., and Bennett W.D. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 2002: 166: 1240–1247.

    Article  Google Scholar 

  • Chalupa D.C., Morrow P.E., Oberdörster G., Utell M.J., and Frampton M.W. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 2004: 112: 879–882.

    Article  CAS  Google Scholar 

  • Dennekamp M., Howarth S., Dick C.A.J., Cherrie J.W., Donaldson K., and Seaton A. Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occup Environ Med 2001: 58: 511–516.

    Article  CAS  Google Scholar 

  • Dick C.A.J., Brown D.M., Donaldson K., and Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 2003: 15: 39–52.

    Article  CAS  Google Scholar 

  • Donaldson K., Stone V., Clouter A., Renwick L., and MacNee W. Ultrafine particles. Occup Environ Med 2001: 58: 211–216.

    Article  CAS  Google Scholar 

  • Findley S., Lawler K., Bindra M., Maggio L., Penachio M.M., and Maylahn C. Elevated asthma and indoor environmental exposures among Puerto Rican children of east Harlem. J Asthma 2003: 40: 557–569.

    Article  Google Scholar 

  • Gilmour M.I., O'Connor S., Dick C.A.J., Miller C.A., and Linak W.P. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. J Air Waste Manage Assoc 2004: 54: 286–295.

    Article  CAS  Google Scholar 

  • Gilmour P.S., Ziesenis A., Morrison E.R., Vickers M.A., Drost E.M., and Ford I., et al. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol 2004: 195: 35–44.

    Article  CAS  Google Scholar 

  • He C., Morawska L., Hitchins J., and Gilbert D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ 2004: 38: 3405–3415.

    Article  CAS  Google Scholar 

  • Hohr D., Steinfartz Y., Schins R.P.F., Knaapen A.M., Martra G., and Fubini B., et al. The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in rat. Int J Hyg Environ Health 2002: 205: 239–244.

    Article  Google Scholar 

  • Hussein T., Hameri K., Heikkinen M.S.A., and Kulmala M. Indoor and outdoor particle size characterization at a family house in Espoo-Finland. Atmos Environ 2005: 39: 3697–3709.

    Article  CAS  Google Scholar 

  • Infante-Rivard C. Childhood asthma and indoor environmental risk factors. Am J Epidemiol 1993: 137: 834–844.

    Article  CAS  Google Scholar 

  • Jaques P.A., and Kim C.S. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal Toxicol 2000: 12: 715–731.

    Article  CAS  Google Scholar 

  • Jenkins R.A., Ilgner R.H., Tomkins B.A., and Peters D.W. Development and application of protocols for the determination of response of real-time particle monitors to common indoor aerosols. J Air Waste Manage Assoc 2004: 54: 229–241.

    Article  CAS  Google Scholar 

  • Kim C.S., and Jaques P.A. Total lung deposition of ultrafine particles in elderly subjects during controlled breathing. Inhal Toxicol 2005: 17: 387–399.

    Article  CAS  Google Scholar 

  • Kulmala M., Vehkamaki H., Petaja T., Maso M.D., Lauri A., and Kerminen V.M., et al. Formation and growth rates of atmospheric particles: a review of observations. J Aerosol Sci 2004: 35: 143–176.

    Article  CAS  Google Scholar 

  • Larson T.V., and Koenig J.Q. Wood smoke: emissions and noncancer respiratory effects. Annu Rev Public Health 1994: 15: 133–156.

    Article  CAS  Google Scholar 

  • Lazardis M., Brodey D.M., Hov O., and Georgopoulous P.G. Integrated exposure and dose modeling and analysis system. 3. Deposition of inhaled particles in the human respiratory tract. Environ Sci Technol 2001: 35: 3727–3734.

    Article  Google Scholar 

  • Levy J.I., Dumyahn T., and Spengler D. Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. J Expos Anal Environ Epidemiol 2002: 12: 104–114.

    Article  CAS  Google Scholar 

  • Li C.S., Lin W.H., and Jenq F.T. Size distributions of submicrometer aerosols from cooking. Environ Int 1993: 19: 147–154.

    Article  CAS  Google Scholar 

  • Li X.Y., Gilmour P.S., Donaldson K., and MacNee W. Free radical activity and proinflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 1996: 51: 1216–1222.

    Article  CAS  Google Scholar 

  • Matson U. Indoor and outdoor concentrations of ultrafine particles in some Scandinavian rural and urban areas. Sci Tot Environ 2005: 343: 169–176.

    Article  CAS  Google Scholar 

  • Morawska L., Congrong H., Hitchins J., Mengersen K., and Gilbert D. Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmos Environ 2003: 37: 4195–4203.

    Article  CAS  Google Scholar 

  • Natural Resources Canada. Summary Report: 1993 Survey of Household Energy Use. Efficiency and Alternative Energy Branch. 1994.

  • Natural Resources Canada. Summary Report: 1997 Survey of Household Energy Use. Office of Energy Efficiency. 2000.

  • Nygaard U.C., Samuelsen M., Aase A., and Lovik M. The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicol Sci 2004: 82: 515–524.

    Article  CAS  Google Scholar 

  • Oberdörster G., Ferin J., and Lehnert B.E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994: 102 (Suppl 6): 173–179.

    Article  Google Scholar 

  • Oberdörster G., Oberdörster E., and Oberdörster J. Nanotoxicology: an emerging discipline from studies of ultrafine particles. Environ Health Perspect 2005: 113: 823–839.

    Article  Google Scholar 

  • Ovrevik J., and Schwarze P.E. Chemical composition and not only total surface area is important for the effects of ultrafine particles. Mut Res 2006: 594: 201–202.

    Article  CAS  Google Scholar 

  • Pekkanen J., Timonen K.L., Ruuskanen J., Reponen A., and Mirme A. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 1997: 74: 24–33.

    Article  CAS  Google Scholar 

  • Penttinen P., Timonen K.L., Tiittanen P., Mirme A., Ruuskanen J., and Pekkanen J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Respir J 2001: 17: 428–435.

    Article  CAS  Google Scholar 

  • Peters A., Wichmann E., Tuch T., Heinrich J., and Heyder J. Respiratory effects are associated with the number of ultra-fine particles. Am J Respir Crit Care Med 1997: 155: 1376–1383.

    Article  CAS  Google Scholar 

  • See S.E., and Balasubramanian R. Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environ Res 2006: 102: 197–204.

    Article  CAS  Google Scholar 

  • Shwe T.T.W., Yamamoto S., Kakeyama M., Kobayashi T., and Fujimaki H. Effect of intratracheal instillation of ultrafine carbon black on proinflammatory cytokine and chemokine release and mRNA expression in lung and lymph nodes of mice. Toxicol Appl Pharmacol 2005: 209: 51–61.

    Article  Google Scholar 

  • Stoeger T., Reinhard C., Takenaka S., Schroeppel A., Karg E., and Ritter B., et al. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 2006: 114: 328–333.

    Article  Google Scholar 

  • Tiitanen P., Timonen K.L., Ruskanen J.J., Mirme A., and Pekkanen J. Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. Eur Resp J 1999: 13: 266–273.

    Article  Google Scholar 

  • Vinzents P.S., Moller P., Sorensen M., Knudsen L.E., Hertel O., and Jensen F.P., et al. Personal exposure to ultrafine particles and oxidative DNA damage. Environ Health Perspect 2005: 113: 1485–1490.

    Article  CAS  Google Scholar 

  • Von Klot S., Wolke G., Tuch T., Heinrich J., Dockery D.W., and Schwartz J., et al. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J 2002: 20: 691–702.

    Article  CAS  Google Scholar 

  • Wallace L. Real-time monitoring of particles, PAH, and CO in an occupied townhouse. Appl Occup Environ Hyg 2000: 15: 39–47.

    Article  CAS  Google Scholar 

  • Wallace L. Ultrafine particles from a vented gas clothes dryer. Atmos Environ 2005: 39: 5777–5786.

    Article  CAS  Google Scholar 

  • Wallace L., Emmerich S.J., and Howard-Reed C. Continuous measurements of air change rates In an occupied house for 1 year: The effect of temperature, wind, fans, and windows. J Expo Anal Environ Epidemiol 2002: 12: 296–306.

    Article  CAS  Google Scholar 

  • Wallace L., Emmerich S.J., and Howard-Reed C. Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ Sci Technol 2004: 38: 2304–2311.

    Article  CAS  Google Scholar 

  • Wallace L., and Howard-Reed C. Continuous monitoring of ultrafine, fine, and coarse particles in a residence for 18 months in 1999–2000. J Air Waste Manage Assoc 2002: 52: 828–844.

    Article  Google Scholar 

  • Weichenthal S., Dufresne A., and Infante-Rivard C. Indoor ultrafine particles and childhood asthma: exploring a potential public health concern. Indoor Air, (Accepted 14 March 2006).

  • Wilson Jr. F.J., Hiller F.C., Wilson J.D., and Bone R.C. Quantitative deposition of ultrafine stable particles in the human respiratory tract. J Appl Physiol 1985: 58: 223–229.

    Article  Google Scholar 

  • Zheng Q., Kusaka Y., and Sato K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J Toxicol Environ Health A 1998: 53: 423–438.

    Article  Google Scholar 

  • Zhou Y.M., Zhong C.Y., Kennedy I.M., Leppart V.J., and Pinkerton K.E. Oxidative stress and NfκB activiation in the lungs of rats: a synergistic interaction between soot and iron particles. Toxicol Appl Pharmacol 2003a: 190: 157–169.

    Article  CAS  Google Scholar 

  • Zhou Y.M., Zhong C.Y., Kennedy I.M., Leppart V.J., and Pinkerton K.E. Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environ Toxicol 2003b: 18: 227–235.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with support from The Canadian Research Network Centre of Excellence (AllerGen). We also thank all study participants for their cooperation and for welcoming us into their homes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Weichenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weichenthal, S., Dufresne, A., Infante-Rivard, C. et al. Indoor ultrafine particle exposures and home heating systems: A cross-sectional survey of Canadian homes during the winter months. J Expo Sci Environ Epidemiol 17, 288–297 (2007). https://doi.org/10.1038/sj.jes.7500534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500534

Keywords

This article is cited by

Search

Quick links