Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Personal and microenvironmental concentrations of particles and microbial aerosol in relation to health symptoms among teachers


A total of 81 randomly selected elementary school teachers participated in two sampling campaigns conducted 2 weeks apart during the winter. A 24-h sample collection was performed using personal and microenvironmental sampling from homes, and an 8-h sample collection was performed from workplaces of the studied subjects. Filters were analyzed for particle mass, absorption coefficient of the filter, and for both total and viable microorganisms. Comprehensive questionnaire responses were collected from the teachers concerning weekly occurred symptoms during the previous 12-month period, and they filled in symptom diaries immediately after each sampling campaign concerning symptoms during the previous 24-h and 7-day periods. The effect of different recall periods on agreement between questionnaire responses was assessed. Factor analysis was used in order to identify factors explaining the pattern of correlations within the personal, home, and work measurements. Moreover, associations between personal, home, and work measurements of pollutants and symptoms were analyzed using general estimation equations. The recall period of 7 days seemed to provide the most reliable data for the health effect assessment. Information from the factor analysis may allow reduction of variables related to the exposure assessment, and better interpretation of results. Both personal exposure and concentrations of pollutants at home were more frequently associated with health symptoms than concentrations at work. In multipollutant analyses, absorbance coefficient was positively associated with eye symptoms, and total bacteria with both cough and blocked nose.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  • Andersson K. Epidemiological approach to indoor air problems. Indoor Air 1998: 8 (Suppl. 4): 32–39.

    Article  Google Scholar 

  • Brunekreef B., Dockery D.W., and Krzyzanowski M. Epidemiologic studies on short-term effects of low levels of major ambient air pollution components. Environ Health Perspect 1995: 103 (Suppl. 2): 3–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bornehag C.G., Blomquist G., Gyntelberg F., Jarvholm B., Malmberg P., Nordvall L. et al. Dampness in buildings and health. Indoor Air 2001: 11 (2): 72–86.

    Article  CAS  Google Scholar 

  • Chelelgo J., Haverinen U., Vahteristo M., Koivisto J., Husman T., Nevalainen A. et al. Analysis of moisture findings in the interior spaces of Finnish housing stock. J Air Waste Manage Assoc 2001: 51 (1): 69–77.

    Article  CAS  Google Scholar 

  • Dales R.E., Miller D., and McMullen E. Indoor air quality and health: validity and determinants of reported home dampness and moulds. Int J Epidemiol 1997: 26 (1): 120–125.

    Article  CAS  Google Scholar 

  • Fung F., and Hughson W.G. Health effects of indoor fungal bioaerosol exposure. Appl Occup Environ Hyg 2003: 18: 535–544.

    Article  Google Scholar 

  • Hirvonen M.-R., Ruotsalainen M., Savolainen K., and Nevalainen A. Effect of viability of actinomycete spores on their ability to stimulate production of nitric oxide and reactive oxygen species in RAW264.7 macrophages. Toxicology 1997: 124: 105–114.

    Article  CAS  Google Scholar 

  • Hälinen A.J., Komulainen H., Salonen R.O., Ruotsalainen M., and Hirvonen M.-R. Diesel particles induce nitric oxide production in murine alveolar macrophages and rat airways. Environ Toxicol Pharmacol 1999: 7: 11–18.

    Article  Google Scholar 

  • Hänninen O.O., Palonen J., Tuomisto J.T., Yli-Tuomi T., Seppänen O., and Jantunen M.J. Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings. Indoor Air 2005: 15 (4): 246–256.

    Article  Google Scholar 

  • Koskinen O.M., Husman T.M., Meklin T.M., and Nevalainen A.I. The relationship between moisture or mould observations in houses and the state of health of their occupants. Euro Respir J 1999: 14 (6): 1363–1367.

    Article  CAS  Google Scholar 

  • Kurnitski J., Palonen J., Engberg S., and Ruotsalainen R. Koulujen sisäilmasto—rehtorikysely ja sisäilmastomittaukset (Indoor Environmental Quality in Schools — Questionnaire Study and Environmental Measurements, in Finnish, Abstract in English), Vol. B43. Publications of Helsinki University of Technology, Espoo, Finland, 1996.

  • Lacey J., and Crook B. Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Ann Occup Hyg 1988: 32 (4): 515–533.

    CAS  PubMed  Google Scholar 

  • Matthias-Maser S., and Jaenicke R. Examination of atmospheric bioaerosol particles with radii >0.2 μm. J Aerosol Sci 1994: 25 (8): 1605–1613.

    Article  CAS  Google Scholar 

  • Mikatavage M.A., Rose V.E., Funkhouser E., Oestenstad R.K., Dillon K., and Reynolds K.D. Beyond air quality — factors that affect prevalence estimates of sick building syndrome. Am Ind Hyg Assoc J 1995: 56: 1141–1146.

    Article  CAS  Google Scholar 

  • Ott W.R. Concepts of human exposure to air pollution. Environ Int 1982: 7 (3): 179–196.

    Article  Google Scholar 

  • Patovirta R. Teachers' health in moisture-damaged schools — a follow-up study. Academic Dissertation, Vol. A5. Publications of National Public Health Institute, Kuopio, Finland, 2005.

  • Peat J.K., Dickerson J., and Li J. Effects of damp and mould in the home on respiratory health: a review of the literature. Allergy 1998: 53 (2): 120–128.

    Article  CAS  Google Scholar 

  • Pirhonen I., Nevalainen A., Husman T., and Pekkanen J. Home dampness, moulds and their influence on respiratory infections and symptoms in adults in Finland. Eur Respir J 1996: 9: 2618–2622.

    Article  CAS  Google Scholar 

  • Pope C.A., Dockery D.W., and Schwartz J. Review of epidemiological evidence of health effects of particulate air pollution. Inhal Toxicol 1995: 7: 1–18.

    Article  CAS  Google Scholar 

  • Roponen M., Toivola M., Alm S., Nevalainen A., Jussila J., and Hirvonen M.-R. Inflammatory and cytotoxic potential of the airborne particle material assessed by nasal lavage and cell exposure methods. Inhal Toxicol 2003: 15: 23–38.

    Article  CAS  Google Scholar 

  • Spengler J.D., and Soczek M.L. Evidence for improved ambient air quality and the need for personal exposure research. Environ Sci Technol 1984: 18: 268A–280A.

    Article  CAS  Google Scholar 

  • Toivola M., Alm S., Reponen T., Kolari S., and Nevalainen A. Personal exposures and microenvironmental concentrations of particles and bioaesols. J Environ Monit 2002: 4: 166–174.

    Article  CAS  Google Scholar 

  • Toivola M., Alm S., and Nevalainen A. Viable fungi and bacteria in personal exposure samples in relation to microenvironements. J Environ Monit 2004a: 6: 113–120.

    Article  CAS  Google Scholar 

  • Toivola M., Alm S., and Nevalainen A. Personal exposure to particles and microbes in relation to microenvironmental concentrations. Indoor Air 2004b: 14 (5): 351–359.

    Article  CAS  Google Scholar 

  • Toivola M., Alm S., Roponen M., Hirvonen M.-R., and Nevalainen A. Determinants of personal exposure to particles and microbial aerosol (Submitted).

  • Verhoeff A.P., and Burge H.A. Health risk assessment of fungi in home environments. Ann Allergy Asthma Immunol 1997: 78 (6): 544–554.

    Article  CAS  Google Scholar 

  • Wallace L. Indoor particles: a review. J Air Waste Manage Assoc 1996: 46: 98–126.

    Article  CAS  Google Scholar 

Download references


This study was financially supported by the Academy of Finland and the Finnish Work Environment Fund.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ulla Haverinen-Shaughnessy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haverinen-Shaughnessy, U., Toivola, M., Alm, S. et al. Personal and microenvironmental concentrations of particles and microbial aerosol in relation to health symptoms among teachers. J Expo Sci Environ Epidemiol 17, 182–190 (2007).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • absorption coefficient
  • health symptoms
  • microbial exposure
  • mold
  • particle mass
  • personal exposure

This article is cited by


Quick links