Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Employing dynamical and chemical processes for contaminant mixtures outdoors to the indoor environment: The implications for total human exposure analysis and prevention

Abstract

There are many physical and chemical processes that affect the accumulation of outdoor pollutants. In recent years some of the information and concepts previously ascribed to outdoor pollution has been found to be useful in examining indoor dynamic and chemical processes. Further, becau se of the confining nature of the indoor environment, processes such as the “grasshopper effect” can lead to sustained higher levels of semivolatile chemicals indoors and affect multiroute (inhalation, dermal, incidental dietary, and nondietary ingestion) exposures. Such processes can also lead to a complex mixture of both semivolatile and volatile compounds in indoor air and on surfaces or within objects. This article specifically examines the above in combination with another indoor issue, indoor chemistry, and places the results into a context that can be used to evaluate (1) multipollutant cumulative or aggregate exposures and risks indoors, (2) exposure reduction strategies that can create healthy indoor environments. It is not a review of the entire field of the indoor environment or indoor air or the indoor environment, which has been covered in numerous volumes and reports. The complexities of the scientific issues are discussed by also placing them into our traditional approaches outdoor and indoor to pollution management, to indicate the difficulty in establishing the exposures that require mitigation or prevention. Further, some emerging issues are discussed as well as how to specifically address long-term single or multiroute exposures to semivolatile compounds within the “Total Indoor Environment.”

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Adgate J.L., Weisel C., Wang Y., Rhoads G.G., and Lioy P.J. Lead in house dust: relationships between exposure metrics. Environ Res 1995: 70 (2): 134–147.

    Article  CAS  PubMed  Google Scholar 

  • Arlian L.G. Biology and ecology of house dust mites, Dermatophagoides spp, and Euroglyphus spp. Immunol Allergy Clini North Am 1989: 9: 339–356.

    Google Scholar 

  • ATSDR. Toxicological Profile for Lead. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA, 1999.

  • Bonanno L.J., Freeman N.C.G., Greenberg M., and Lioy P.J. Multivariate analysis on levels of selected metals, particulate matter, VOC, and household characteristics and activities from the Midwestern States NHEXAS. Appl Occup Environ Hyg 2001: 16 (9): 859–874.

    Article  CAS  Google Scholar 

  • Bukowski J.A., Robson M.G., Buckley B.T., Russell D.W., and Meyer L.W. Air levels of volatile organic compounds following indoor application of an emulsifiable concentrate insecticide. Environ Sci Technol 1996: 30 (8): 2543–2546.

    Article  CAS  Google Scholar 

  • CARB. The California Consumer Products Regulations, Title 17, Division 3, Chapter 1, Subchapter 8.5, Articles 1–5, Sacremento, CA, 2005.

  • Chuang J.C., Callahan P.J., Menton R.G., Gordon S.M., Lewis R.G., and Wilson N. Monitoring methods for polycyclic aromatic hydrocarbons and their distribution in household track-in-soil. Environ Sci Technol 1995: 29: 494–500.

    Article  CAS  PubMed  Google Scholar 

  • Clausen P.A., Hansen V., Gunnarsen L., Afshari A., and Wolkoff P. Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: emission and sorption experiments in FLEC and CLIMPAQ. Environ Sci Technol 2004: 38 (9): 2531–2537.

    Article  CAS  PubMed  Google Scholar 

  • Colombo A., De Bortoli M., Knoppel H., Pecchio E., and Vissers H. Adsorption of selected volatile organic compounds on a carpet, a wall covering, and a gypsum board in test house. Indoor Air 1993: 3: 276–282.

    Article  CAS  Google Scholar 

  • Colt J.S., Lubin J., Camann D., Davis S., Cerhan J., Severson R.K., Cozen W., and Hartge P. Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four US sites. J Exp Analy Environ Epidemiol 2004: 14 (1): 74–83.

    Article  CAS  Google Scholar 

  • Cone J.E., and Hodgson M.J., (Eds.) Problem buildings: building-associated illness and the sick building syndrome. Occup Med State Art Rev. Hanley and Belfus, Philadelphia, PA, pp 575–580 1989.

    Google Scholar 

  • Dearry A. Impacts of our built environment on public health. Environ Health Perspect 2004: 112: A600–A601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan N.H., and Mage D.T. Combination of direct and indirect approaches for exposure assessment. J Exp Anal Environ Epidemiol 1997: 7 (4): 439–470.

    CAS  Google Scholar 

  • Edwards R.D., Yurkow E., and Lioy P.J. Seasonal deposition of housedusts onto household surfaces. Sci Total Environ 1998: 224: 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Fan Z., Lioy P., Weschler C., Fiedler N., Kipen H., and Zhang J. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ Sci Technol 2003: 37 (9): 1811–1821.

    Article  CAS  PubMed  Google Scholar 

  • Farfel M.R., Lees P.S.J., Rohde C.A., Lim B.S., and Bannon D. Comparison of wipe and cyclone methods for the determination of lead in residential dusts. Appl Occup Environ Hygiene 1994a: 9 (12): 1006–1012.

    Article  CAS  Google Scholar 

  • Farfel M.R., Lees P.S., Rohde C.A., Lim B.S., Bannon D., and Chisolm J.J. Comparison of a wipe and a vacuum collection method for the determination of lead in residential dusts. Environmental Research 1994b: 65 (2): 291–301.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez P.F., and Grimalt J.O. On the global distribution of persistent organic pollutants. Chimia 2003: 57: 514–521.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts B., and Pitts J. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic Press, New York, 2000.

    Google Scholar 

  • Foley G.J., Georgopoulos P.G., and Lioy P.J. Accountability within new ozone standards. Environ Sci Technol 2003: 37 (21): 392A–399A.

    Article  CAS  PubMed  Google Scholar 

  • Freeman N.C., Wainman T., Lioy P.J., Stern A.H., and Shupack S.I. The effect of remediation of chromium waste sites on chromium levels in urine of children living in the surrounding neighborhood. Air Waste Manage Assoc 1995: 45 (8): 604–614.

    Article  CAS  Google Scholar 

  • Georgopoulos P.G., and Lioy P.J. Theoretical framework of human exposure and dose assessment to a computational system implementation: the Modeling ENvironment for TOtal Risk Studies (MENTOR). J Toxicol Environ Health 2006 (in press).

  • Georgopoulos P.G., Purushothaman V., and Chiou R. Comparative evaluation of methods for estimating potential human exposure to ozone: photochemical modeling and ambient monitoring. J Exp Analysis Environ Epidemiol 1997: 7 (2): 191–215.

    CAS  Google Scholar 

  • Georgopoulos P.G., Wang S.W., Vyas V.M., Sun Q., Burke J., Vedantham R., McCurdy T., and Ozkaynak H. A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a summer 1999 episode. J Exp Anal Environ Epidemiol 2005: 15: 439–457.

    Article  CAS  Google Scholar 

  • Gurunathan S., Robson M., Freeman N., Buckley B., Roy A., Meyer R., Bukowski J., and Lioy P.J. Accumulation of chlorpyrifos on residential surfaces and toys accessible to children. Environ Health Persp 1998: 106 (1): 9–16.

    Article  CAS  Google Scholar 

  • Hirsch T., Kuhlisch E., Soldan W., and Leupold W. Variability of house dust mite allergen exposure in dwellings. Environ Health Persp 1998: 106 (10): 659–664.

    Article  CAS  Google Scholar 

  • Hites R.A. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ Scie Technol 2004: 38 (4): 945–956.

    Article  CAS  Google Scholar 

  • Hodgson A.T., Wooley J.D., and Daisey J.M. Emissions of volatile organic compounds from new carpets measured in a large-scale environmental chamber. Air Waste Manage Assoc 1993: 43 (3): 316–324.

    Article  CAS  Google Scholar 

  • Hood E. Nanotechnology: looking as we leap. Environ Health Perspect 2004: 112 (13): A740–A749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hore P., Robson M., Freeman N., Zhang J., Wartenberg D., Ozkaynak H., Tulve N., Sheldon L., Needham L., Barr D., and Lioy P.J. Chlorpyrifos accumulation patterns for child-accessible surfaces and objects and urinary metabolite excretion by children for 2 weeks after crack-and-crevice application. Environ Health Perspect 2005: 113 (2): 211–219.

    Article  CAS  PubMed  Google Scholar 

  • IJC. International Air Quality Advisory Board Special Transboundary Report on Air Quality Issues, Washington, DC, 1998.

  • Ilacqua V., Freeman N.C.J., Fagliano J., and Lioy P.J. The historical record of air pollution as defined by attic dust. Atmos Environ 2003: 37 (17): 2379–2389.

    Article  CAS  Google Scholar 

  • Jantunen M., Hänninen O., Katsouyanni K., Knöppel H., Kuenzli N., Lebret E., Maroni M., Saarela K., Sram R., and Zmirou D. Air pollution exposure in European cities: the “Expolis”-study. J Exp Anal Environ Epidemiol 1998: 4: 495–518.

    Google Scholar 

  • Johnson T., Myers J., Kelly T., Wisbith A., and Ollison W. A pilot study using scripted ventilation conditions to identify key factors affecting indoor pollutant concentration and air exchange rate in a residence. J Exp Analysis Environ Epidemiol 2004: 14 (1): 1–22.

    Article  CAS  Google Scholar 

  • Joint Research Commission. The INDEX Project (Critical Appraisal of Setting and Implementation of Indoor Exposur Limits in the EU) Summary of Recommendations and Management Options, 1–28, Ispra, Italy, February, 2005.

  • Jorgensen R.B., Bjorseth O., and Malvik B. Chamber testing of adsorption of volatile organic compounds (VOCs) on material surfaces. Indoor Air 1999: 9: 2–9.

    Article  CAS  PubMed  Google Scholar 

  • Kamens R., Jang M., Chien C.J., and Leach K. Aerosol formation from the reaction of alpha-pinene and ozone using a gas-phase kinetics aerosol partitioning model. Environ Sci Technol 1999: 33: 1430–1438.

    Article  CAS  Google Scholar 

  • Lee K., Xue J., Geyh A.S., Ozkaynak H., Leaderer B.P., Weschler C. and Spengler J.D. Nitrous acid, nitrogen dioxide and ozone concentrations in residential environments. Environ Health Perspect 2002: 110: 145–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis R.D., Breysse P.N., Lees P., Diener-West M., Hamilton R.G., and Eggleston P. Factors affecting the retention of dust mite allergen on carpet. Am Industrial Hygiene Assoc 1998: 59: 606–613.

    Article  CAS  Google Scholar 

  • Lioy P. The analysis of total human exposure for exposure assessment: A multi-discipline science for examining human contact with contaminants. Environ Sci Technol 1990a: 24: 938–945.

    Article  CAS  Google Scholar 

  • Lioy P.J. Exposure analysis and assessment for low-risk cancer agents. Int J Epidemiol 1990b: 19 (Suppl 1): S53–S61.

    Article  PubMed  Google Scholar 

  • Lioy P.J. The 1998 ISEA Wesolowski Award lecture. Exposure analysis: reflections on its growth and aspirations for its future. International Society of Exposure Analysis. J Exp Anal Environ Epidemiol 1999: 9 (4): 273–281.

    Article  CAS  Google Scholar 

  • Lioy P.J. Exposure analysis and research needs to support environmental health sciences in the 21st century. Eur J Oncol 2000: 5 (Suppl 2): 13–16.

    Google Scholar 

  • Lioy P.J., Edwards R.D., Freeman N., Gurunathan S., Pellizzari E., Adgate J.L., Quackenboss J., and Sexton K. House dust levels of selected insecticides and a herbicide measured by the EL and LWW samplers and comparisons to hand rinses and urine metabolites. J Exp Analysis Environ Epidemiol 2000: 10 (4): 327–340.

    Article  CAS  Google Scholar 

  • Lioy P.J., Freeman N.C., and Millette J.R. Dust: a metric for use in residential and building exposure assessment and source characterization. Environ Health Perspect 2002: 110 (10): 969–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lioy P.J., Wainman T., Zhang J., and Goldsmith S. Typical household vacuum cleaners: the collection efficiency and emissions characteristics for fine particles. J Exp Anal Environ Epidemiol 1999: 49 (2): 200–206.

    CAS  Google Scholar 

  • Lohmann R., and Lammel G. Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling. Environ Sci Technol 2004: 38: 3793–3803.

    Article  CAS  PubMed  Google Scholar 

  • Lu C.S., Fenske R.A., Simcox N.J., and Kalman D. Pesticide exposure of children in an agricultural community: evidence of household proximity to farmland and take home exposure pathways. Environ Res 2000: 84 (3): 290–302.

    Article  CAS  PubMed  Google Scholar 

  • Millette J.R., Lioy P.J., Wietfeld J., Hopen T.J., Gipp M., Padden T., Singsank C., and Lepow J. A microscopical study of the general composition of household dirt. Microscope 2004: 51 (4): 201–207.

    Google Scholar 

  • Molhave L. Sensory Irritation in Humans Caused by Volatile Organic Compounds in Indoor Air Pollutants: A Summary of Exposure Experiments. Indoor Air Qual Handbook 2001, McGraw Hill, NY, Chapter 25.

    Google Scholar 

  • Molhave L., Schneider T., Kjaergaard S.K., Larsen L., Norn S., and Jorgensen O. House dust in seven Danish offices. Atmos Environ 2000: 34 (28): 4767–4779.

    Article  CAS  Google Scholar 

  • National Research Council. Human Exposure Assessment for Airbourne Pollutants: Advances and Opportunity. National Academy of Science Press, Washington, DC, 1991, 1–329.

  • National Research Council. Pesticides in Diets of Infants and Children. National Academy of Science Press, Washington, DC, 1993a, 1–408.

  • National Research Council. Exposure in Infants, Children and other Sensitive Populations. National Academy of Science Press, Washington, DC, 1993b, 1–396.

  • National Research Council. Science and Judgment in Risk Assessment. National Academy of Science Press, Washington, DC, 1994, pp. 1–672.

  • National Research Council. Research Priorities for Airborne Particulate Matter: IV Continuing Research Progress. National Academy of Science Press, Washington, DC, 2004b, pp. 1–272.

  • Nazaroff W., and Cass G.R. Mathematical modeling of chemically reactive pollutants in indoor air. Environ Sci Technol 1986: 20: 924–934.

    Article  CAS  PubMed  Google Scholar 

  • Nazaroff W.W., and Weschler C.J. Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmosp Environ 2004: 38: 2841–2865.

    Article  CAS  Google Scholar 

  • NIOSH. Mixed exposure research agenda, National Mixtures Exposure Team. No. 2005, Cincinnati, OH, 2004.

  • Oberdorster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., and Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004: 16 (6-7): 437–445.

    Article  CAS  PubMed  Google Scholar 

  • OECD. Guidance Document on Reporting Summary Information on Environmental, Occupational and Consumer Exposure. 16, Paris, France, 2003.

  • Olson D.A., and Corsi R.L. In-home formation and emissions of trihalomethanes: the role of residential dishwashers. J Exp Anal Environ Epidemiol 2004: 14 (2): 109–119.

    Article  CAS  Google Scholar 

  • Pellizzari E., Lioy P., Quackenboss J., Whitmore R., Clayton A., Freeman N., Waldman J., Thomas K., Rodes C., and Wilcosky T. Population-based exposure measurements in EPA region 5: a phase I field study in support of the National Human Exposure Assessment Survey. J Exp Anal Environ Epidemiol 1995: 5 (3): 327–358.

    CAS  Google Scholar 

  • Pellizzari E.D., Smith D.J., Clayton C.A., Michael L.C., and Quackenboss J.J. An assessment of the data quality for NHEXAS—Part I: Exposure to metals and volatile organic chemicals in Region 5. J Exp Anal Environ Epidemiol 2001: 11 (2): 140–154.

    Article  CAS  Google Scholar 

  • Riedler J., Braun-Fahrlander C., Eder W., Schreuer M., Waser M., Maisch S., Carr D., Schierl R., Nowak D., von Mutius E., and Team A.S. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2002: 359: 623–624.

    Article  Google Scholar 

  • Roberts J.W. Reducing health risks in the home. In: P. Dickey (Ed.) Master Home Environmental Training Manual. American Lung Association of Washington, Seattle, 1998 Chapter 6.

    Google Scholar 

  • Roberts J.W., Clifford W.S., Glass G., and Hummer P.G. Reducing dust, lead, dust mites, bacteria, and fungi in carpets by vacuuming. Arch Environ Contam Toxicol 1999: 36 (4): 477–484.

    CAS  PubMed  Google Scholar 

  • Roy A., Georgopoulos P.G., Ouyang M., Freeman N., and Lioy P.J. Environmental, dietary, demographic, and activity variables associated with biomarkers of exposure for benzene and lead. J Exp Anal Environ Epidemiol 2003: 13 (6): 417–426.

    Article  CAS  Google Scholar 

  • Rudel R.A., Brody J.G., Spengler J.D., Vallarino J., Geno P.W., Sun G., and Yau A. Identification of selected hormonally active agents and animal mammary carcinogens in commercial and residential air and dust samples. Air Waste Manage Assoc 2001: 51 (4): 499–513.

    Article  CAS  Google Scholar 

  • Rudel R.A., Camann D.E., Spengler J.D., Korn L.R., and Brody J.G. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 2003: 37 (20): 4543–4553.

    Article  CAS  PubMed  Google Scholar 

  • Seifert B., Becker K., Helm D., Krause C., Schulz C., and Seiwert M. The German environment survey 1990/1992 (GerES II): reference concentrations of selected environmental pollutants in blood, urine, hair, house dust, drinking water and indoor air. J Exp Anal Environl Epidemiol 2000: 10: 552–565.

    Article  CAS  Google Scholar 

  • Sexton K., Callahan M.A., Bryan E.F., Saint C.G., and Wood W.P. Informed decisions about protecting and promoting public-health—rationale for a National Human Exposure Assessment Survey. J Exp Anal Environ Epidemiol 1995: 5 (3): 233–256.

    CAS  Google Scholar 

  • Skipp A.M., and Allen B.C. Quantitative methods for cancer risk assessment. In: Wiley Toxic Air Pollution Handbook. David R. Patrick (Ed.), New York, 1994, pp. 79–99.

    Google Scholar 

  • Spengler J.D., Samet J.M., and McCarthy J.F. Indoor Air Quality Handbook. McGraw Hill, New York, 2001 Chapters 2,3,7.

    Google Scholar 

  • Suk W.A., Olden K., and Yang R.S. Chemical mixtures research: significance and future perspectives. Environ Health Persp 2002: 110 (Suppl 6): 891–892.

    Article  CAS  Google Scholar 

  • Tucker W . Volatile organic compounds. In: Spengler J.D., and Samet, J.M., McCarthy J.F. (Eds.), Indoor Air Quality Handbook. McCraw Hill: NYC, 2001.

    Google Scholar 

  • USEPA. Achieving Clean air and clean water: the Report of the Blue Ribbon Panel on Oxygenates in Gasoline. EPA420-R-99-021, Washington, DC, 1999: http://www.epa.gov/otaq/consumer/fuels/oxypanel/r99021.pdf.

  • USEPA. National Air Toxics Program: The Integrated Urban Strategy: Report to Congress. QAQPS EPA453/R92007, Research Triangle Park, NC, 2000a.

  • USEPA. Supplementing Guidance for Conducting Health Risk Assessments of Chemical Mixtures. EPA/630/R-00/002, Washington, DC, 2000b.

  • USEPA. Office of Pesticide Programs: principles for performing aggregate exposure and risk assessments. 6043, Washington DC, 2001.

  • USEPA. Framework for Cumulative risk assessment. EPA/630/P02/001F, Washington, DC, 2003.

  • USEPA. Air Quality Criteria for Particulate Matter. EPA/600/P-99/002aF, NCEA-ORD, RTP, NC, 2004a: http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=87903.

  • Wainman T., Weschler C.J., Lioy P.J., and Zhang J. Effects of surface type and relative humidity on the production and concentration of nitrous acid in a model indoor environment. Environ Sci Technol 2001: 35 (11): 2201–2206.

    Article  CAS  PubMed  Google Scholar 

  • Wainman T., Zhang J., Weschler C.J., and Lioy P.J. Ozone and limonene in indoor air: a source of submicron particle exposure. Environ Health Perspec 2000: 108 (12): 1139–1145.

    Article  CAS  Google Scholar 

  • Wallace L.A., Emmerich S.J., and Howard-Reed C. Continuous measurements of air change rates in an occupied house for 1 year: the effect of temperature, wind, fans, and windows. J Exp Anal Environ Epidemiol 2002: 12 (4): 296–306.

    Article  CAS  Google Scholar 

  • Wang E., Rhoads G.G., Wainman T., and Lioy P. The effects of environmental and carpet variables on vacuum cleaner sampling efficiency. Appl Occup Environ Hygiene 1995: 10: 111–119.

    Article  Google Scholar 

  • Weisel C.P., Zhang J., Turpin B.J., Morandi M.T., Colome S., Stock T.H., Spektor D.M., Korn L., Winer A., Alimokhtari S., Kwon J., Mohan K., Harrington R., Giovanetti R., Cui W., Afshar M., Maberti S., and Shendell D. Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results. J Exp Anal Environ Epidemiol 2005: 15 (2): 123–137.

    Article  CAS  Google Scholar 

  • Weschler C. Indoor ozone/terpene reactions as a source of indoor particles. Atmos Environ 1999: 33: 2301–2312.

    Article  CAS  Google Scholar 

  • Weschler C.J. Ozone in indoor environments: concentration and chemistry. Indoor Air 2000: 10: 269–288.

    Article  CAS  PubMed  Google Scholar 

  • Weschler C.J. Indoor/outdoor connections exemplified by processes that depend on an organic compound's saturation vapor pressure. Atmos Environ 2003: 37: 5455–5465.

    Article  CAS  Google Scholar 

  • Weschler C.J., and Shields H.C. Potential reactions among indoor pollutants. Atmos Environ 1997: 31 (21): 3487–3495.

    Article  Google Scholar 

  • Wilson N.K., Chuang J.C., Lyu C., Menton R., and Morgan M.K. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J Exp Anal Environ Epidemiol 2003: 13: 187–202.

    Article  CAS  Google Scholar 

  • Wu F. Mycotoxin risk assessment for the purpose of setting international regulatory standards. Environ Health Perspec 2004: 38 (15): 4049–4055.

    CAS  Google Scholar 

  • www.epa.gov/pesticides/science/models_db.htm.

  • Zhang J., and Lioy P. Ozone in residential air: concentrations, I/O ratios, indoor chemistry, and exposures. Indoor Air 1994a: 4: 95–104.

    Article  CAS  Google Scholar 

  • Zhang J., and Lioy P.J. Characteristics of aldehydes: concentrations, sources, and exposure for indoor outdoor residential microenvironments. Environ Sci Technol 1994b: 28: 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J., Wilson W.E., and Lioy P.J. Sources of organic acids in indoor air: a field study. J Exp Analy Environ Epidemiol 1994: 4 (1): 25–47.

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Drs. J. Zhang and C. Weisel of EOHSI, and Dr N. Freeman, U. Florida, for their assistance in reviewing the manuscript, and their excellent comments and suggestions for improvement, and Dr. C. Weschler of EOHSI for our continuing discussions on total exposure and the indoor environment. The author thanks the many people who have conducted indoor research over the past 30 years, and helped improve our current understanding of fundamental issues. The research supported by the Center for Exposure and Risk Modeling (CERM) (Grant No.: CR8162501); the Center for Childhood Neurotoxicology and Exposure Assessment (POIES11256-01), and the NIEHS Center at EOHSI (Grant No.: P30 ESO5022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J Lioy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lioy, P. Employing dynamical and chemical processes for contaminant mixtures outdoors to the indoor environment: The implications for total human exposure analysis and prevention. J Expo Sci Environ Epidemiol 16, 207–224 (2006). https://doi.org/10.1038/sj.jes.7500456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500456

Keywords

  • multi-route exposure
  • semivolatile chemicals
  • total indoor environment
  • Grasshopper effect

This article is cited by

Search

Quick links