Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation


Epidemiological studies have found negative associations between human health and particulate matter in urban air. In most studies outdoor monitoring of urban background has been used to assess exposure. In a field study, personal exposure as well as bedroom, front door and background concentrations of PM2.5, black smoke (BS), and nitrogen dioxide (NO2) were measured during 2-day periods in 30 subjects (20–33 years old) living and studying in central parts of Copenhagen. The measurements were repeated in the four seasons. Information on indoor exposure sources such as environmental tobacco smoke (ETS) and burning of candles was collected by questionnaires. The personal exposure, the bedroom concentration and the front door concentration was set as outcome variable in separate models and analysed by mixed effect model regression methodology, regarding subject levels as a random factor. Seasons were defined as a dichotomised grouping of outdoor temperature (above and below 8°C). For NO2 there was a significant association between personal exposure and both the bedroom, the front door and the background concentrations, whereas for PM2.5 and BS only the bedroom and the front door concentrations, and not the background concentration, were significantly associated to the personal exposure. The bedroom concentration was the strongest predictor of all three pollution measurements. The association between the bedroom and front door concentrations was significant for all three measurements, and the association between the front door and the background concentrations was significant for PM2.5 and NO2, but not for BS, indicating greater spatial variation for BS than for PM2.5 and NO2. For NO2, the relationship between the personal exposure and the front door concentration was dependent upon the “season”, with a stronger association in the warm season compared with the cold season, and for PM2.5 and BS the same tendency was seen. Time exposed to burning of candles was a significant predictor of personal PM2.5, BS and NO2 exposure, and time exposed to ETS only associated with personal PM2.5 exposure. These findings imply that the personal exposure to PM2.5, BS and NO2 depends on many factors besides the outdoor levels, and that information on, for example, time of season or outdoor temperature and residence exposure, could improve the accuracy of the personal exposure estimation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others



black smoke


nitrogen dioxide


environmental tobacco smoke


standardised effect


  • Abt E., Suh H.H., Catalano P.J., and Koutrakis P. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environ Sci Technol 2000: 34: 3579–3587.

    Article  CAS  Google Scholar 

  • Brauer M., Hruba F., Mihalikova E., Fabianova E., Miskovic P., Plzikova A., Lendacka M., Vanderberg J., and Cullen A. Personal exposure to particles in Banska Bystrica, Slovakia. J Expos Anal Environ Epidemiol 2001: 10: 478–487.

    Article  Google Scholar 

  • Brunekreef B., and Holgate S.T. Air pollution and health. Lancet 2002: 360: 1233–1242.

    Article  CAS  PubMed  Google Scholar 

  • Cocheo V., Boaretto C., and Sacco P. High uptake rate radial diffusive sampler suitable for both solvent and thermal desorption. Am Ind Hyg Assoc 1996: 57: 897–904.

    Article  CAS  Google Scholar 

  • Dockery D.W., Pope III A.C., Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris Jr B.G., and Speizer F.E. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993: 329: 1753–1759.

    Article  CAS  PubMed  Google Scholar 

  • Ebelt S.T., Petkau A.J., Vedal S., Fishe T.V., and Brauer M. Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationship between personal and ambient air concentration. J Air Waste Manage Assoc 2000: 50: 1081–1094.

    Article  CAS  Google Scholar 

  • Gotschi T., Oglesby L., Mathys P., Monn C., Manalis N., Koistinen K., Jantunen M., Hanninen O., Polanska L., and Kunzli N. Comparison of black smoke and PM2.5 levels in indoor and outdoor environments of four European cities. Environ Sci Technol 2002: 36: 1191–1197.

    Article  PubMed  Google Scholar 

  • Hoek G., Meliefste K., Cyrys J., Lewne M., Bellander T., Brauer M., Fischer P., Gehring U., Heinrich J., van Vliet P., and Brunekreef B. Spatial variation of fine particle concentrations in three European areas. Atmos Environ 2002: 36: 4077–4088.

    Article  CAS  Google Scholar 

  • Hornung R.W., and Reed L.D. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 1990: 5: 46–51.

    Article  CAS  Google Scholar 

  • Horvath H. Size segregated light absorption coefficient of the aerosol. Atmos Environ 1995: 29: 875–883.

    Article  CAS  Google Scholar 

  • ISO 9835. Determination of a black smoke index in ambient air. British Standard Specifications, 1747[11] 1993.

  • Janssen N.A., de Hartog J.J., Hoek G., Brunekreef B., Lanki T., Timonen K.L., and Pekkanen J. Personal exposure to fine particulate matter in elderly subjects: relation between personal, indoor, and outdoor concentrations. J Air Waste Manage Assoc 2000: 50: 1133–1143.

    Article  CAS  Google Scholar 

  • Jantunen M.J., Hanninen O., Katsouyanni K., Knoppel H., Kuenzli N., Lebret E., Maroni M., Saarela K., Sram R., and Zmirou D. Air pollution exposure in European cities: The ‘EXPOLIS’ study. J Expos Anal Environ Epidemiol 1998: 8: 495–518.

    CAS  Google Scholar 

  • Jenkins P.L., Phillips T.J., Mulberg E.J., and Hui S.P. Activity patterns of Californians: use and proximity to indoor pollutant sources. Atmos Environ 1992: 26A: 2141–2148.

    Article  CAS  Google Scholar 

  • Kenny L.C., and Gussman R.A. Characterization and modelling of a family of cyclone aerosol preseparators. J Aerosol Sci 1997: 28: 677–688.

    Article  CAS  Google Scholar 

  • Kinney P.L., Aggarwal M., Northridge M.E., Janssen N.A., and Shepard P. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study. Environ Health Perspect 2000: 108: 213–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koistinen K.J., Hanninen O., Rotko T., Edwards R.D., Moschandreas D., and Jantunen M.J. Behavioral and environmental determinants of personal exposures to PM2.5 in EXPOLIS — Helsinki, Finland. Atmos Environ 2001: 35: 2473–2481.

    Article  CAS  Google Scholar 

  • Kousa A., Monn C., Rotko T., Alm S., Oglesby L., and Jantunen M.J. Personal exposure to NO2 in the EXPOLIS-study: relation to residential indoor, outdoor and workplace concentration in Basel, Helsinki and Prague. Atmos Environ 2001: 35: 3405–3412.

    Article  CAS  Google Scholar 

  • Koutrakis P., and Briggs S.L.K. Source apportionment of indoor aerosols in Suffolk and Onondaga counties, New York. Environ Sci Technol 1992: 26: 521–527.

    Article  CAS  Google Scholar 

  • Levy J.I., Lee K., Spengler J.D., and Yanagisawa Y. Impact of residential nitrogen dioxide exposure on personal exposure: an international study. J Air Waste Manage Assoc 1998: 48: 553–560.

    Article  CAS  Google Scholar 

  • Long C.M., Suh H.H., Catalano P.J., and Koutrakis P. Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ Sci Technol 2001a: 35: 2089–2099.

    Article  CAS  PubMed  Google Scholar 

  • Long C.M., Suh H.H., Kobzik L., Catalano P.J., Ning Y.Y., and Koutrakis P. A pilot investigation of the relative toxicity of indoor and outdoor fine particles: in vitro effects of endotoxin and other particulate properties. Environ Health Perspect 2001b: 109: 1019–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell R., Berhane K., Gilliland F., Molitor J., Thomas D., Lurmann F., Avol E., Gauderman W.J., and Peters J.M. Prospective study of air pollution and bronchitic symptoms in children with asthma. Am J Respir Crit Care Med 2003: 168: 790–797.

    Article  PubMed  Google Scholar 

  • Ozkaynak H., Xue J., Spengler J., Wallace L., Pellizzari E., and Jenkins P. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California. J Expos Anal Environ Epidemiol 1996: 6: 57–78.

    CAS  Google Scholar 

  • Pellizzari E., Clayton C.A., Rodes C., Mason R.E., Piper L.L., Fort B., Pfeifer G., and Lynam D. Particulate matter and manganese exposure in Toronto, Canada. Atmos Environ 1999: 33: 721–734.

    Article  CAS  Google Scholar 

  • Pope C.A., Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., and Thurston G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002: 287: 1132–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope C.A., Thun M.J., Namboodiri M.M., Dockery D.W., Evans J.S., Speizer F.E., and Heath Jr C.W. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 1995: 151: 669–674.

    Article  PubMed  Google Scholar 

  • Rodes C.E., Lawless P.A., Evans G.F., Sheldon L.S., Williams R.W., Vette A.F., Creason J.P., and Walsh D. The relationships between personal PM exposures for elderly populations and indoor and outdoor concentrations for three retirement center scenarios. J Expos Anal Environ Epidemiol 2001: 11: 103–115.

    Article  CAS  Google Scholar 

  • Roosli M., Theis G., Staehelin J., Mathys P., Oglesby L., Camenzind M., and Braun-Fahrlander C. Temporal and spatial variation of the chemical composition of PM10 at urban and rural sites in the Basel area, Switzerland. Atmos Environ 2001: 35: 3701–3713.

    Article  CAS  Google Scholar 

  • Seaton A., Soutar A., Crawford V., Elton R., McNerlan S., Cherrie J., Watt M., Agius R., and Stout R. Particulate air pollution and the blood. Thorax 1999: 54: 1027–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen M., Autrup H., Hertel O., Wallin H., Knudsen L.E., and Loft S. Personal exposure to PM2.5 and biomarkers of DNA damage. Cancer Epidemiol Biomarkers Prev 2003a: 12: 191–196.

    CAS  PubMed  Google Scholar 

  • Sorensen M., Daneshvar B., Hansen M., Dragsted L.O., Hertel O., Knudsen L., and Loft S. Personal PM(2.5) exposure and markers of oxidative stress in blood. Environ Health Perspect 2003b: 111: 161–166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thatcher T.L., and Layton D.W. Deposition, resuspension, and penetration of particles within a residence. Atmos Environ 1995: 29: 1487–1497.

    Article  CAS  Google Scholar 

  • Vignati E., Berkowicz R., Palmgren F., Lyck E., and Hummelshøj P. Transformation of size distributions of emitted particles in streets. Sci Total Environ 1999: 235: 37–49.

    Article  CAS  Google Scholar 

  • Wallace L. Indoor particles: a review. J Air Waste Manage Assoc 1996: 46: 98–126.

    Article  CAS  Google Scholar 

  • Williams R., Suggs J., Creason J., Rodes C., Lawless P., Kwok R., Zweidinger R., and Sheldon L. The 1998 Baltimore Particulate Matter Epidemiology — Exposure Study: part 2. Personal exposure assessment associated with an elderly study population. J Expos Anal Environ Epidemiol 2000: 10: 533–543.

    Article  CAS  Google Scholar 

Download references


Financial support was obtained from the Danish National Environmental Research Programme under the Centre for the Environment and the Respiratory System (CML).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steffen Loft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, M., Loft, S., Andersen, H. et al. Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation. J Expo Sci Environ Epidemiol 15, 413–422 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


This article is cited by


Quick links