Abstract
This study examined the association of contaminated fish consumption and polychlorinated biphenyl (PCB) body burden by comparing the similarity of the congener pattern in yellow perch, caught near the point source of industrial pollution, and in other local fish to the pattern found in the breast milk of Mohawk women from Akwesasne, a Native American community located along the St. Lawrence River in New York, Ontario, and Quebec. The similarity is defined by the weighted Euclidean distance between two congener patterns. Ninety-seven Mohawk mothers participated and provided samples of breast milk. One hundred fifty-four nursing women from the Supplemental Nutrition Program for Women, Infants and Children (WIC) of Warren and Schoharie counties, New York, who gave birth during the same time period, were used as the comparison group. Results revealed that the breast milk of the Mohawk women, who ate the most local fish, had a congener pattern that more closely resembled that of perch caught near the waste site or average sampled fish caught in the Reserve than Mohawk women who ate less fish or the controls. The outcome demonstrates how PCBs may be “fingerprinted” as they migrate offsite from industrial sources and ultimately result in human exposure.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 6 print issues and online access
$259.00 per year
only $43.17 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Agency for Toxic Substances and Disease Registry, Toxicological profile for selected polychlorinated biphenyls — update (TP-92/16) U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA, 1993
American Society for Testing and Materials, Designation (1989) D4210-89: 2–7
Borlakoglu J, and Haegele K, Comparative aspects on the bioaccumulation, metabolism and toxicity of PCBs. Comp. Biochem. Physiol. (1991) 3: 327–339
Bray JR and Curtis JT, An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. (1957) 27: 325–349
Burse V et al Determination of polychlorinated biphenyl levels in the serum of residents and in the homogenates of seafood from the New Bedford, Massachusetts, area: a comparison of exposure sources through pattern recognition techniques. Sci. Total Environ. (1994) 144: 153–177
Bush B, and Snow J, Glass capillary chromatography for sensitive, accurate polychlorinated biphenyl analysis. J. Assoc. Off. Anal. Chem. (1982) 65: 555–566
Bush B, Snow J, and Connor S, High-resolution gas chromatographic analysis of nonpolar chlorinated hydrocarbons in human milk. J. Assoc. Off. Anal. Chem. (1983) 66: 248
Bush B, Snow J, Connor S et al Half-life of PCB congeners, p,p′-DDE and hexachlorobenzene in human milk in three areas of upstate New York. Arch. Environ. Contam. Toxicol. (1985) 14: 443–450
Dunn WJ Stalling DL Schwartz TR Hogan JW Petty JD Johansson E and Wold S, Pattern recognition for classification and determination of polychlorinated biphenyls in environmental samples. Anal. Chem. (1984) 56: 1308–1313
Environmental Protection Agency, Definition and procedure for determination of the method detection limit. Fed. Reg. (1984) 49: 43430–43431
Erickson MD, Analytical Chemistry of PCBs. Chelsea, MI: Lewis Publishers, 1992
Fitzgerald E, Hwang S, Brix K et al Fish PCB concentration and consumption patterns among Mohawk women at Akwesasne. J. Expos. Anal. Environ. Epidemiol. (1995a) 5: 1–19
Fitzgerald E, Hwang S, Brix K et al Exposure to PCBs from hazardous waste among Mohawk women and infants at Akwesasne. Report for the Agency for Toxic Substances and Disease Registry, PB95-159935 ATSDR, Atlanta, 1995b
Fitzgerald E, Hwang S, Bush B, Cook K, and Worswick P, Fish consumption and breast milk PCB concentrations among Mohawk women at Akwesasne. Am. J. Epidemiol. (1998) 148: 164–72
Hansen LG, Environmental toxicology of polychlorinated biphenyls In: Safe S. (Ed.), Polychlorinated Biphenyls (PCBs): Mammalian and Environmental Toxicology Springer-Verlag, Berlin, 1987
Hwang S, Gensburg L, Fitzgerald E, Herzfeld P, and Bush B, Fingerprinting sources of contamination: statistical techniques for identifying point sources of PCBs. J. Occup. Med. Toxicol. (1993) 4: 365–382
Kotz S, and Johnson N, Encyclopedia of Statistical Sciences Vol. 5 John Wiley and Sons, New York, 1982, pp. 397–405
Mes J, Arnold D, and Bryce F, The elimination and estimated half-lives of specific PCB congeners from the blood of female monkeys after discontinuation of daily dosing with Aroclor 1254. Chemosphere (1995) 30: 789–800
New York State Department of Environmental Conservation, Health Advisory, New York State 1989–1990 Fishing Regulations Guide NYS Department of Environmental Conservation, Albany, NY, 1989
New York State Department of Health, 1991–92 Health Advisories: Chemicals in Sport Fish or Game NYS Department of Health, Albany, 1991
Safe S, Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): biochemistry, toxicology, and mechanism of action. CRC Crit. Rev. Toxicol. (1984) 13: 319–375
Schwartz TR and Stalling DL, Chemometric comparison of polychlorinated biphenyl residues and toxicologically active polychlorinated biphenyl congeners in the eggs of Forster's terns ( Sterna fosteri). Arch. Environ. Contam. Toxicol. (1991) 20: 183–199
Sherer RA and Price PS, The effect of cooking processes on PCB levels in edible fish tissue. Qual. Assur. (1993) 2: 396–407
Stalling DL Norstrom RJ Smith LM and Simon M, Patterns of PCDD, PCDF, and PCB contamination in Great Lakes fish and birds and their characterization by principal components analysis. Chemosphere (1985) 14: 627–643
Wenning RJ Harris MA Finley B Paustenbach DJ and Bedbury H, Application of pattern recognition techniques to evaluate polychlorinated dibenzo- p-dioxin and dibenzofuran distributions in surficial sediments from the lower Passaic River and Newark Bay. Ecotoxicol. Environ. Saf. (1993) 25: 103–125
Wilson ND Shear NM Paustenbach DJ and Price PS, The effect of cooking practices on the concentration of DDT and PCB compounds in the edible tissue of fish. J. Expos. Anal. Environ. Epidemiol. (1988) 8: 423–440
Acknowledgements
Funding for this project was provided, in part, by the Agency for Toxic Substances and Disease Registry (grant H75/ATH290026) and the National Institute of Environmental Health Sciences (grant P42 ES04913).
The authors express their appreciation to the following persons for their help: Ann Casey, Susan Dzurica, Kenneth Jock, Trudy Lauzon, F. Henry Lickers, Patricia Roundpoint, Priscilla Worswick.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
HWANG, SA., YANG, BZ., FITZGERALD, E. et al. Fingerprinting PCB patterns among Mohawk women. J Expo Sci Environ Epidemiol 11, 184–192 (2001). https://doi.org/10.1038/sj.jea.7500159
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.jea.7500159
Keywords
This article is cited by
-
Cultural and health implications of fish advisories in a Native American community
Ecological Processes (2013)
-
Environmental and occupational exposures and serum PCB concentrations and patterns among Mohawk men at Akwesasne
Journal of Exposure Science & Environmental Epidemiology (2007)