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High-density lipoproteins (HDLs) have been well established to protect against the development of atherosclerotic 
cardiovascular disease. It has become apparent that in addition to the promotion of reverse cholesterol transport, HDLs 
possess a number of additional functional properties that may contribute to their beneficial influence on the arterial wall. 
A number of exciting therapeutic strategies have been developed that target HDL and its ability to protect against the 
development of atherosclerotic plaque. This paper will review how the promotion of the functional properties of HDL 
inhibits the formation of atherosclerotic plaque and stabilises lesions in patients with established disease.
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Introduction

The last two decades has seen a large body of evidence 
supporting a role for aggressive modification of estab-
lished risk factors in preventing clinical events attribut-
able to atherosclerotic coronary heart disease (CHD). 
As a result, a number of pharmacological agents have 
become integral components of cardiovascular preventive 
strategies. This prompted two Nobel laureates to propose 
that CHD would be eradicated by the early stages of this 
century [1]. While these agents have made a substantial 
impact, it has become apparent that many patients con-
tinue to experience clinical events. There is an ongoing 
need to identify new therapeutic targets to further reduce 
clinical risk. High-density lipoprotein-cholesterol (HDL-
C) has emerged as an attractive target in the search for 
new pharmacological strategies.

What are HDLs

HDLs represent the plasma fraction of lipoproteins in 
the density range 1.063-1.21 mg/mL. The HDL fraction in-
cludes a wide range of circulating particles that demonstrate 
marked heterogeneity in terms of their shape, size, surface 
charge and lipid composition. The basic structure involves a 
lipid core surrounded by surface containing a phospholipid 
bilayer, free cholesterol and a number of apolipoproteins 
(A-I, A-II, A-IV, C, D, E and J). The heterogeneous nature 
of circulating HDL results from the constant remodelling 
of particles in response to a range of plasma factors [2]. 

Protective properties of HDL-C: lessons from hu-
man studies

Fifty years have passed since the initial report that pa-
tients presenting with a myocardial infarction had lower 
levels of the lipoprotein fraction that demonstrated a-mi-
grating mobility on gel electrophoresis, later identified as 
HDL-C [3]. A number of large population studies have 
reported that the incidence of clinical CHD was inversely 
correlated with plasma levels of HDL-C [4, 5]. For every 
1 mg/dL increase in plasma HDL-C, the incidence of clini-
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cal events declines by 2-3%. In fact, plasma HDL-C was 
found to be the strongest biochemical predictor of clinical 
events in the Framingham Heart Study [5]. Plasma HDL-C 
levels were also found to be an important predictor of event 
rates in clinical trials testing the impact of lipid lowering 
therapies. In trials of both statins [6, 7] and fibrates [8], 
the event rate in placebo-treated patients (and therefore 
the relative risk reduction seen with active treatment) was 
greatest in those subjects with a low plasma HDL-C level 
at baseline.

Protective properties of HDL: lessons from animal 
studies

A large body of evidence has emerged from animal 
studies to suggest that elevation of HDL-C is protective. 
Badimon and colleagues were the first to report that adminis
tration of HDL-C inhibited lesion formation and promoted 
regression of pre-existent lesions in cholesterol-fed rabbits 
[9, 10]. Since that time, a number of groups have reported 
that elevation of plasma HDL-C by either infusion of HDL 
or apolipoprotein A-I (apoA-I, the predominant protein of 
HDL) [11-15] or transgenic expression of human apoA-I 
 [1618] has a beneficial impact on lesion size in animal 
models of atherosclerosis. In addition to a favourable ef-
fect on the early stages of atheroma formation, elevation 
of HDL-C by either transgenic expression of apoA-I [18] 
or infusion of synthetic HDL-containing apoA-I Milano 
(AIM) [12], a variant of apoA-I, reduced the size, lipid and 
inflammatory composition of established lesions.

HDL facilitates reverse cholesterol transport

While a number of functional properties of HDL have 
been described (Figure 1), the best characterised is its 
pivotal role in the promotion of reverse cholesterol trans-

port, the process by which cholesterol is mobilised from 
peripheral tissue to the liver [19]. HDL is the primary ac-
ceptor of cholesterol effluxed from peripheral cells via a 
number of mechanisms including passive diffusion across 
the cellular membrane and active transport by a family 
of transmembrane ATP-binding protein channels [20]. 
The best-characterised member of this family, ABCA1, 
preferentially effluxes cholesterol to lipid deplete or free 
forms of apoA-I [21]. Patients with Tangier’s disease, a 
syndrome characterised by low plasma levels of HDL-C 
and impaired cholesterol efflux, are deficient in ABCA1 
[22]. It has recently been reported that other ATP-binding 
proteins, ABCG1 and ABCG5 [23, 24], are involved in 
the efflux of cholesterol to lipidated HDL particles. Im-
mense interest has been focused on the development of 
pharmacologic strategies that promote the expression of 
these transmembrane proteins and thus facilitate reverse 
cholesterol transport.

Once cholesterol has been effluxed to the HDL particle, 
it is rapidly esterified by lecithin:cholesterol acyltransfer-
ase, and subsequently stored within the core of the HDL-C 
particle. As the particle surface remains relatively deplete 
of cholesterol, this maintains the gradient driving efflux 
from cells to the HDL particle. Cholesterol is subsequently 
transported to the liver where it is taken up by the scaven-
ger receptor SRBI. Alternatively, esterified cholesterol is 
transferred to apoB-containing lipoproteins, such as very 
low-density lipoproteins and low-density lipoproteins 
(LDL), in a process facilitated by cholesteryl ester transfer 
protein (CETP). Following transfer to apoB-containing 
lipoproteins, cholesterol is either taken up by the liver via 
the LDL receptor or delivered to cells in the periphery. 
In the liver, the cholesterol is used for either lipoprotein 
synthesis or is excreted in the bile salts.

Functional properties of HDL beyond lipids

Antioxidant properties
HDL attenuates the bioavailability of a number of pro-

oxidant species that have been implicated in the propagation 
of atherogenesis. HDL inhibits the oxidative modification 
of LDL [25]. Nonmodified forms of LDL are not proath-
erogenic [26]. The finding that HDLs possess a number of 
antioxidant factors, including paraoxonase and platelet-ac-
tivating factor – acetylhydrolase [27], and are the major in 
vivo sink for lipid hydroperoxides [28], provides a number 
of potential mechanisms by which oxidative modification 
of LDL is impaired. Administration of HDL in both cellu-
lar [29] and animal [30] settings has also been reported to 
inhibit the generation of reactive oxygen species, such as 
superoxide, and restore its physiological balance to nitric 
oxide (NO) (Figure 2).

Figure 1 Potential antiatherosclerotic functional properties of 
HDLs.
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Anti-inflammatory properties
HDLs modulate a number of inflammatory events that 

participate in the formation of atherosclerotic plaque and 
its evolution to clinical ischemia. HDLs inhibit the expres-
sion of proinflammatory adhesion molecules [3133] and 
chemokines by endothelial cells and subsequent monocyte 
chemotaxis [34], key early events in atherogenesis. These 
in vitro properties have been reported to differ markedly 
between HDL isolated from different subjects [35, 36]. The 
finding that altering the phospholipid composition of re-
constituted HDL influenced their ability to inhibit adhesion 
molecule expression provides one potential mechanism for 
this heterogeneity [37]. These benefits have been extended 
to the in vivo setting, where elevation of HDL-C resulted 
in a reduction in the vascular expression of adhesion mole-
cules and chemokines and infiltration of inflammatory cells 
into the arterial wall [12, 14, 18]. Given that these findings 

are derived from studies involving hypercholesterolaemic 
animals, it has been proposed that the antiinflammatory 
properties are simply a consequence of cholesterol efflux 
from the arterial wall. 

HDL was recently demonstrated to possess antiinflam-
matory properties in a normocholesterolaemic model of 
acute vascular inflammation [30]. The vascular infiltration 
by neutrophils and endothelial expression of adhesion 
molecules stimulated by application of a periarterial collar 
was markedly attenuated by infusion of rHDL to chow-fed 
rabbits (Figure 3). Given that the animals had low systemic 
cholesterol levels, it is unlikely that there was a substantial 
degree of cholesterol efflux from the arterial wall, support-
ing a primary antiinflammatory role of HDL in vivo. 

Inflammatory factors play a major role in determining 
the propensity of established atherosclerotic plaque to 
rupture and promote thrombus formation. Elevation of 
HDL-C, via infusion of HDL [12] or transgenic expression 
of apoA-I [18], results in a reduction of macrophages and 
chemokines within established atherosclerotic lesions. This 
was further supported by the recent report that infusion of 
small amounts of reconstituted or native HDL, without an 
increase in systemic HDL-C levels, rapidly reduces lesion 
size (Figure 4) and increases the ratio of smooth muscle 
cells to macrophages (Figure 5) in a model of established 
atherosclerotic plaque, induced by aortic balloon denuda-
tion in the cholesterol-fed rabbit [38]. This suggests that 
the quality of HDL that is administered, rather than the 
systemic level of HDL-C achieved, is of particular impor-
tance in potential remodelling of established atherosclerotic 
plaque and its proclivity to result in clinical ischaemia.

Other properties
HDL has been reported to possess a number of potential-

ly antithrombotic properties including inhibition of platelet 
activation and promotion of endogenous fibrinolytic and 
anticoagulant systems [39]. The finding that HDL increases 

Figure 3 Infiltration of neutrophils into the vascular wall of carotid arteries without (left panel) and with application of a periarte-
rial collar (middle panel) in animals infused with saline. The collarinduced neutrophil influx is markedly attenuated by infusion of 
animals with reconstituted HDL (right panel) (adapted from Circulation 2005; 111:1543-1550).

Figure 2 Expression of reactive oxygen species in the arterial wall 
detected by lucigenin chemiluminescence. The increased expression 
stimulated by application of a periarterial collar was attenuated by 
administration of rHDL. *p<0.01 for comparison with non-collared 
vessels and **p<0.001 for comparison with saline-infused animals 
(adapted from Circulation 2005; 111:1543-1550).
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NO synthesis [40] may also contribute to an antithrombotic 
environment. Enhanced NO production results from in-
teraction of HDL with the scavenger receptor in caveolae 

resulting in increased NO synthase activity [41]. Reports 
that HDL improves reactivity of vascular rings in organ 
bath studies [42, 43] was extended to the human setting 
where infusion of rHDL restores endothelial function in 
subjects with hypercholesterolaemia [44] or low levels of 
HDLC in the setting of heterozygous ABCA1 deficiency 
[45]. Reduced tissue injury in models of ischaemia-reperfu-
sion [46, 47] and shock in the setting of both hypovolemia 
[48] and sepsis [49] is likely to result from the combination 
of antioxidant, antiinflammatory and NOenhancing ac-
tivities of HDL. HDLs have also been reported to possess 
antiapoptotic activity [50-53], although the underlying 
mechanism for this property remains unresolved.

Dysfunctional forms of HDL-C

The finding that many subjects with plasma HDLC lev-
els that are considered to be normal or elevated have CHD 
[54] highlights an interesting paradox. Is it possible that 
not all HDL particles are protective? A number of groups 
have reported that when HDL particles contain apoA-II, 
its cholesterol efflux, antioxidant and antiinflammatory 
properties are less than that seen with apoA-I-only-con-
taining particles [55]. As a result, it has been reported that 
apoA-II may be either less atheroprotective or potentially 
proatherogenic [55, 56]. Further, the ability of HDL to in-
hibit in vitro monocyte chemotaxis following stimulation 
with oxidised LDL is impaired in the setting of the acute 
phase response to influenza in mice [57]. It has also been 
reported that antiinflammatory properties of HDL vary 
widely among different human subjects [35]. In fact, it was 
demonstrated that HDL isolated from subjects with elevated 
plasma HDL-C levels and CHD actually promoted, rather 
than inhibited, monocyte chemotaxis [36]. 

A potential mechanism underlying the heterogeneity in 
the functional properties of HDL is the degree of oxida-
tive modification. Oxidative modification of HDL, either 
directly [58] or in the setting of glycation [59, 60], has been 
reported to be associated with impaired cholesterol efflux 
capacity. It has been speculated that oxidation of various 
phospholipid species on HDL may contribute to its degree 
of functional activity [61]. In addition, it has been recently 
reported that apoAI is a selective target for modification 
by myeloperoxidase (MPO)-generated oxidants in the 
in vivo setting [62-66]. ApoA-I isolated from serum of 
patients with CHD contained greater amounts of nitrotyro-
sine and chlorotyrosine, oxidative products of MPO, than 
circulating apoA-I from healthy controls. ApoA-I isolated 
from atherosclerotic plaque demonstrated substantially 
greater amounts of these oxidative products, suggesting 
that modification occurs preferentially within the arterial 
wall. Subsequent studies revealed that increasing oxidative 

Figure 4 Atherosclerotic lesion size in the abdominal aorta in rabbits 
that received no treatment or infusions of reconstituted HDL. *p<0.05 
for comparison with untreated animals (adapted from Arterioscler 
Thromb Vasc Biol 2005; 25:2416-2421).

2.5

2.0

1.5

1.0

0.5

0.0
Untreated                         rHDL

P
la

qu
e 

ar
ea

 m
m

2

*

Figure 5 Representative staining of atherosclerotic lesions for 
smooth muscle cells (upper panels) and macrophages (lower panels) 
in animals that received no treatment (left panels) or infusions of 
reconstituted HDLs (right panels) (adapted from Arterioscler Thromb 
Vasc Biol 2005; 25:2416-2421).
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modification of apoAI is accompanied by an increasing 
impairment of ABCA1dependent cholesterol efflux from 
macrophages [65, 66].

The demonstration that HDL function varies raises the 
possibility that it might potentially be modified in response 
to a range of interventions. It has recently been reported 
that the ability of HDL to inhibit proinflammatory adhe-
sion molecule expression by endothelial cells is enhanced 
following consumption of a polyunsaturated fat-rich meal. 
In contrast, consumption of a saturated fat decreases this 
activity of HDL [67]. Further, statin therapy is associated 
with an enhanced ability of HDL to inhibit monocyte 
chemotaxis [36]. As statin therapy has been reported to 
attenuate MPO expression by macrophages and reduces 
systemic levels of the MPO product, nitrotyrosine [68, 
69], it is also possible that this would result in a reduction 
in oxidative modification of apoAI and subsequently en-
hanced cholesterol efflux activity. 

Existing therapeutic strategies to raise HDL

A number of established interventions have been demons-
trated to promote an increase in plasma HDL-C levels. 
Lifestyle modifications, with regard to diet, exercise and 
smoking cessation, result in a modest elevation in the 
plasma concentration and particle size of HDL-C. In fact, 
it was reported that substantial levels of exercise result in 
a 10% increase in HDL-C levels at best [70]. 

Several established pharmacologic agents that are 
primarily directed at lowering levels of atherogenic li-
poproteins also raise HDL-C levels. While statins raise 
HDLC by 510% [71], the greatest efficacy in terms of 
clinical event reduction was seen in those subjects with 
the lowest levels of HDL-C [6, 7]. Fibrates raise HDL-C 
by 5-15% [72, 73] and have been demonstrated to reduce 
clinical events in studies of both primary [72] and sec-
ondary [73] prevention. Despite the ability of fibrates to 
lower triglyceride levels, their effect on clinical events 
was attributed more to their ability to elevate HDL-C [8]. 
Fibrates act primarily as agonists of the nuclear receptor 
peroxisome proliferator-activated receptor-alpha (PPAR-a) 
[74]. In addition to regulating expression of a number of 
factors promoting reverse cholesterol transport, PPAR-a 
stimulation has also been reported to be antiinflamma-
tory [75]. Therefore, fibrates might potentially exert their 
atheroprotective properties via both their promotion of an 
antiatherogenic lipid profile and a direct protective influ-
ence on the arterial wall. 

Nicotinic acid is the most potent HDL-C-raising agent 
(15-30%) currently available [76, 77]. Long-term admin-
istration results in a reduction in clinical events [78], and 
when used in combination with statin therapy, promotes 

angiographic regression [79]. However, nicotinic acid is 
limited by a high incidence of intolerance, primarily related 
to flushing. The use of an extended release formulation, 
which appears to be free of these adverse events, was 
demonstrated to halt progression of carotid intimal-medial 
thickness, a measure of subclinical atherosclerosis, in as-
sociation with HDL-C elevation [80]. Given that raising 
HDL-C with established therapies is typically modest, there 
is currently no defined target for HDLC elevation. As a 
result, HDL-C elevation remains a secondary goal in the 
lipid management guidelines of the National Cholesterol 
Education Programme [81]. 

Emerging therapeutic strategies to raise HDL

The fact that LDL-C reduction is the primary goal of 
lipid management results from the unequivocal evidence 
of the efficacy of LDLC reduction by statins in numerous 
clinical trials [6, 7, 82, 83]. In contrast, the relative paucity 
of effective therapeutic options for HDL-C elevation has 
contributed to the lack of consensus on what would be an 
appropriate treatment goal. As a result, HDL-C elevation 
remains a secondary target for cardiovascular prevention. 
A number of novel strategies that promote the direct ad-
ministration of HDL or influence its metabolic remodelling 
are in various stages of development.

Infusion of synthetic HDL
A number of reports have emerged to support the con-

cept that directly infusing synthetic forms of HDL has a 
beneficial impact on the vasculature in humans. A single 
infusion of reconstituted HDL has been demonstrated to 
restore endothelial function in subjects with either hyper-
cholesterolaemia [44] or low HDL-C levels in the setting of 
heterozygous ABCA1 deficiency [45]. In addition, infusion 
of reconstituted HDL is followed by an increase in faecal 
sterol excretion, a surrogate index of reverse cholesterol 
transport [84]. Given that these findings suggest that admin-
istration of HDL stimulates NO bioavailability and reverse 
cholesterol transport, it seems plausible that a therapeutic 
consequence might involve a favourable influence on ath-
erosclerotic plaque. An exciting proof-of-concept study 
subsequently reported that administration of reconstituted 
particles containing the apoA-I variant, AIM, and phospho-
lipid promoted regression of coronary atheroma in humans 
[85] (Figure 6). Forty-seven subjects, within 2 weeks of 
an acute coronary syndrome, received infusions of saline 
or rHDL containing either low (15 mg/kg) or high (45 
mg/kg) dose AIM weekly for 5 weeks. Serial intravascular 
ultrasound analysis of a coronary arterial segment revealed 
a 4.2% reduction in atheroma volume in subjects who 
received infusions of rHDL. This extends the finding that 
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a single infusion of rHDL-containing AIM has a profound 
impact on atherosclerotic plaque in animal studies [12]. The 
potential significance of this result is further highlighted 
by the fact that in previous studies of antiatherosclerotic 
interventions, benefit was demonstrated only after a much 
longer time of follow-up [86, 87]. A larger trial is required 
to investigate this phenomenon further and to assess the 
potential impact on clinical events.

ApoA-I mimetic peptides
The development of short peptides, with similar struc-

ture and function to that of apoA-I, presents an alterna-
tive option to the intravenous infusion of rHDL. When 
synthesised with D-type amino acids, these peptides are 
resistant to hydrolysis by stomach acid and can therefore 
be administered orally [88]. One such peptide, D-4F, has 
been demonstrated to elevate levels of lipid-deplete HDL 
[88]. D4F has been reported to enhance cholesterol efflux, 
enhance NO bioavailability, inhibit superoxide formation 
and inhibit monocyte chemotaxis in the in vitro and ex 
vivo setting [89]. Accordingly, D-4F has been reported to 
inhibit lesion formation in animal models of atherosclerosis 
[88-92]. 

Phospholipid vesicles
Phospholipid is the alternative component of nascent 

HDL that can be potentially administered. Phospholipid 
does not circulate in a free form and therefore anything 
that is introduced into the systemic circulation is rapidly 

incorporated into lipoproteins. This results in an increase 
in circulating forms of nascent forms of HDL containing 
only apoAI and phospholipid. Given that lipid-deplete 
forms of HDLs possess efficient cholesterol efflux and 
antiinflammatory activity, it is possible that the generation 
of these particles would be beneficial. It has been reported 
that administration of phospholipid inhibits lesion forma-
tion and promotes regression of existing plaque in animal 
models of atherosclerosis [93]. It remains to be determined 
whether administration of phospholipid vesicles exerts a 
beneficial impact on the vasculature in humans.

Enhanced PPAR agonists
PPARs are a family of nuclear transcription factors that 

have been demonstrated to play pivotal roles in the regula-
tion of a range of processes regulating metabolic homeosta-
sis [94]. Activation of PPAR- promotes an antiatherogenic 
lipid milieu, characterised by increases in HDL expression 
and function, and lowering of plasma triglyceride. PPAR-g 
activation improves insulin sensitivity. In addition, it ap-
pears that PPAR agonists might have a direct effect at the 
level of the arterial wall. In particular, both PPAR-a and 
PPAR-g inhibit a number of critical steps in the inflamma-
tory cascade, which may contribute to vascular protection. 
Established therapies including fibrates [74] and thiazoli-
dinediones [95] have been demonstrated to act as agonists 
of PPAR-a and PPAR-g, respectively. However, currently 
available agents are relatively weak agonists. A number of 
experimental agents that are currently in development are 

Figure 6 Representative example of regression of coronary atherosclerotic plaque (shaded areas) at a matched site imaged by intra-
vascular ultrasound performed before (left panel) and following (right panel) treatment with reconstituted HDL particles containing 
AIM.
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either stronger pharmacologic agonists or interact with both 
classes of receptors and therefore have the potential to result 
in a more comprehensive influence on the arterial wall.

CETP inhibition
Considerable debate has focused on whether CETP 

exerts an influence on atherogenesis. Once esterified cho-
lesterol is transferred to apoB-containing lipoproteins, it 
can be taken up, via the LDL receptor on the liver surface. 
This would provide an alternative route for reverse cho-
lesterol transport and have a potentially beneficial impact 
on atherogenesis. On the other hand, given that apoB-con-
taining lipoproteins might alternatively deliver esterified 
cholesterol to peripheral tissues, including the arterial wall, 
this process might promote atheroma formation. Conflicting 
data have emerged from epidemiological studies. Popula-
tions with a high incidence of CETP deficiency appear to be 
relatively protected from CHD in some, but not all, studies 
[96]. The development of a number of experimental ap-
proaches to inhibit CETP activity has produced consistent 
results in rabbit models of atherosclerosis. Administration 
of antisense oligonucleotides [97], a vaccine against CETP 
[98], and chemical inhibitors of CETP [99] have each been 
demonstrated to inhibit lesion formation. Administration 
of oral CETP inhibitors in humans has been reported to 
elevate HDLC and lower LDLC [100]. The influence 
of these agents on atherosclerotic plaque progression and 
clinical events is currently being investigated in large-scale 
human clinical trials.

Conclusion

HDLs possess a number of biological activities that 
potentially modulate pathologic events that contribute to 
all stages of atheroma formation and its clinical complica-
tions. As a result of an enhanced understanding of factors 
that promote HDL levels and function, a number of exciting 
therapeutic strategies are currently in development, which 
have the potential to have a major impact on the prevention 
and treatment of atherosclerotic cardiovascular disease.
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