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Loss of self-tolerance and expansion of auto-reactive lymphocytes are the basis for autoimmunity. Apoptosis and 
the rapid clearance of apoptotic cells by phagocytes usually occur as coordinated processes that ensure regulated cel-
lularity and stress response with non-pathological outcomes. Defects in clearance of apoptotic cells would contribute to 
the generation of self-reactive lymphocytes, which drive autoimmune disorders such as rheumatoid arthritis (RA) and 
systemic lupus erythematosus (SLE). The IL-12 family of cytokines (IL-12, IL-23, and IL-27) and IL-10 are produced 
by phagocytic macrophages and play critical roles in the regulation of antigen-presenting cells (APCs) and effector lym-
phocytes during an immune response to pathogens. Inappropriate expression of these cytokines and their dysregulated 
activities have been strongly implicated in the pathogenesis of several autoimmune diseases. The production of pro- and 
anti-inflammatory cytokines by phagocytic APCs is delicately regulated during the ingestion of apoptotic cells as part 
of an intrinsic mechanism to prevent inflammatory autoimmune reactions. How apoptotic cell-derived signals regulate 
cytokine production is poorly understood. A recent study by our group demonstrated that phagocytosis of apoptotic cells 
by activated macrophages results in strong inhibition of IL-12 p35 gene expression by activating a novel transcription 
repressor, which we named GC-binding protein (GC-BP), through tyrosine dephosphorylation. We are also beginning 
to understand the molecular mechanisms underlying apoptotic cell-triggered production of IL-10 by phagocytes. These 
studies will help to elucidate some novel immune regulatory mechanisms and explore the regulation of immune responses 
to autoantigens with potentials to discover new therapeutic targets for the treatment of autoimmune disorders. 
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Clearance of apoptotic cells by professional phago-
cytes

Multicellular organisms have evolved genetic and epi-
genetic mechanisms of programmed cell death (apoptosis) 
to eliminate cells that are no longer needed or damaged. 
Physiological apoptosis has an essential role in develop-
ment, differentiation and tissue homeostasis [1]. The 
elimination of apoptotic cells and cell bodies by phagocytes 
represents an evolutionarily conserved means to prevent 
exposure of surrounding tissue to potentially cytotoxic, 

immunogenic, or inflammatory cellular contents [2, 3]. 
When apoptosis occurs at moderate rates such as during 
normal adult tissue turnover, neighboring cells such as 
fibroblasts can act as phagocytes in their ingestion and 
clearance. When apoptosis occurs on large scales such as 
during embryonic morphorgenesis, ionizing radiation, and 
acute infections, macrophages are the major professional 
phagocytes that play important roles in the clearance of 
apoptotic cells. Macrophages are attracted to sites of high 
rate of apoptosis such as the thymus and the follicles of 
secondary lymphoid tissues in the immune system. 

Phagocytic receptors and apoptotic cell ligands

Apoptotic cells exhibit numerous changes including 
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alteration of membrane lipid molecules and carbohydrates. 
There are four major phospholipids in the plasma mem-
brane of many mammalian cells, phosphatidylcholine (PC), 
phosphatidylethanolamine (PE), phosphatidylserine (PS) 
and sphingomyelin. PS is normally limited to the inner 
layer of the lipid bilayer [4] but is found at higher levels 
on the outer leaflet of cell membranes that are undergoing 
apoptosis due to a poorly understood inhibition of an ami-
nophospholipid translocase [5] and the activation of a lipid 
scramblase [6]. The observation that apoptotic cells that 
do not express PS are poorly phagocytosed suggests that 
PS provides an important signal in the recognition and/or 
clearance of apoptotic cells [7]. The process of removing 
dead cells is carried out by a wide variety of cell types and 
involves multiple receptors [8], such as scavenger recep-
tors, oxidized low-density lipoprotein receptors, CD14, 
CD68, CD36, and vitronectin receptor, and apoptotic cell 
ligands. The exposed PS on apoptotic cells is recognized 
by several phagocyte receptors including a presumptive 
phosphatidylserine (PS) receptor (PSR) [9]. Ligation of 
this presumptive PSR has been proposed to be the primary 
mechanism through which these responses are initiated 
[10], although experimental demonstration of such a recep-
tor has been quite controversial [11].

A 4-step process has been proposed to account for the 
recognition and ingestion of apoptotic cells by phagocytes. 
Ligation of the “PSR” on phagocytes delivers a “tickle” sig-
nal, which stimulates the internalization of apoptotic cells, 
including bystander cells, that are “tethered” to the phagocytes 
through other recognition receptors. Simultaneously, the im-
mune response is modulated through secretion of immuno-
suppressive cytokines [12].

Phagocytosis of apoptotic cells and regulation of im-
mune responses

Resolution of inflammation depends not only on the 
removal of apoptotic cells but also on active suppression 
of inflammatory mediator production. Aberrations in ei-
ther mechanism are associated with chronic inflammatory 
conditions and autoimmune disorders [13-15]. Uptake 
of apoptotic cells by phagocytes is thought to suppress 
autoimmune responses through the release of anti-inflam-
matory cytokines IL-10, TGF-β, platelet activating factor 
(PAF), and prostaglandin E2 (PGE2), and inhibition of pro-
inflammatory cytokines TNF-α, GM-CSF, IL-12, IL-1β, 
and IL-18 [16-18].

In human systemic lupus erythematosis (SLE), impaired 
phagocytosis of apoptotic materials by macrophages has 
been reported [19, 20], providing an explanation for in-
creased levels of early apoptotic cells, DNA, and nucleo-
somes observed in the circulation of SLE patients [21-24]. 

The impaired clearance of apoptotic cells resulting in an 
accumulation of late apoptotic and secondary necrotic 
cells including oligosomes might lead to an activation of 
autoreactive T and B cells [16].             

IL-12 family of cytokines in autoimmunity

IL-12 is an important cytokine in both the innate and 
adaptive phases of host immune defenses against intracel-
lular pathogens. IL-12 is a heterodimer produced primarily 
by macrophages and DCs. It is a key factor in the induction 
of T cell-dependent and independent activation of macro-
phages, NK cells, generation of T helper type 1 (Th1) cells 
and CTL, induction of opsonizing, complement-fixing 
antibodies, and resistance to intracellular infections [25]. 
The genes encoding the two heterologous chains of IL-12, 
p40 and p35 are located on different human and mouse 
chromosomes. Together, p40 and p35 form the biologi-
cally active IL-12 (also called p70). The p40 chain is also 
shared with another IL-12-related cytokine, IL-23, which 
is composed of p40 and an IL-12-independent subunit 
p19 [26]. The highly coordinated expression of p40 and 
p35 genes to form IL-12 p70 in the same cell type at the 
same time is essential for the initiation of an effective 
immune response. IL-12 is also an important player in T-
cell-mediated autoimmunity [27, 28]. Specifically, IL-12 
administration exacerbates autoimmune phenomena by 
inducing the differentiation of Th1 autoreactive cells [29, 
30] whereas the lack of IL-12/IL-23 p40 in genetically 
deficient mice or mice treated with anti-IL-12 antibody ab-
rogated diseases in experimental models of autoimmunity 
such as insulin-dependent diabetes mellitus (IDDM) in 
NOD mice [31, 32], experimental allergic encephalomy-
elitis (EAE) [33, 34], experimental autoimmune uveitis 
(EAU) [35, 36], and collagen-induced arthritis (CIA) [37]. 
Aberrant levels of IL-12 are produced by macrophages 
isolated from young mice prone to lupus (MRL and 
NZB/W) [38]. The diabetes-associated quantitative trait 
locus, Idd4, was found to be responsible for the IL-12 p40 
overexpression in nonobese diabetic (NOD) mice.[39] 
Administration of IL-12 to aging mice renders them 
vulnerable to the induction of experimental SLE induced 
by the monoclonal anti-DNA autoantibody bearing the 
16/6Id.[40] In human patients with SLE, elevated levels 
of IL-12, IL-18 is observed [41-43], and the higher serum 
IL-12 levels are correlated with fever in subjects but not 
with renal diseases [44]. Moreover, PBMCs from patients 
with active SLE were found to be more sensitive to IL-12 
by inducing phosphorylation of STAT3 and STAT4 [45]. 
IL-12 produced by DCs in a CD4+ T cell-dependent man-
ner is able to break tolerance and activates CD8+ T cell 
effector functions in graft rejection [46]. Administration 



 Cell Research | www.cell-research.com 

Cytokines and phagocytosis of apoptotic cells
156
npg

of IL-12 and IL-18 in vivo can break oral tolerance to 
ovalbumin with abrogated suppression of specific IgG2a 
production, delayed-type hypersensitivity responses and 
IFN-g production by antigen-specific T cells [47].

IL-27 is the latest addition to the IL-12 family. IL-27 
is a heterodimeric protein consisted of Epstein–Barr virus 
(EBV)-induced gene 3 (EBI3), a p40-related protein, and 
p28, a newly discovered IL-12 p35-related polypeptide. 
IL-27 appears to be produced early by activated antigen-
presenting cells. It is able to induce clonal proliferation of 
naïve but not memory CD4+ T cells and synergizes with 
IL-12 in IFN-g production by naïve CD4+ T cells [48]. 
Recently, an orphan receptor was described with 26% ho-
mology and 37% similarity to the IL-12Rβ2 subunit and 
to gp130, respectively, designated TCCR [49] or WSX-1 
[50]. This receptor was identified as one of the receptor 
subunits for IL-27 and is necessary but not sufficient for 
IL-27 function [48]. It has been suggested that IL-27 and 
IL-12 function sequentially in initiating and maintaining 
Th1 responses, respectively [48, 50]. Recombinant IL-27 
expressed from tumor cells has been shown to elicit potent 
tumor-specific immune responses in vivo and result in 
complete regression of orthotopic primary and metastatic 
murine neuroblastoma tumors [51], and Colon 26 murine 
colon carcinoma [52].

Li et al, reported that IL-27 p28 and EBI3 subunits and 
WSX-1 mRNAs were markedly upregulated in inflam-
matory cells in the CNS during EAE [53]. Furthermore, 
neutralizing the in vivo function of IL-27 by antibodies 
against IL-27 p28 rapidly suppressed an ongoing long-last-
ing disease in C57BL/6 mice [54]. These studies strongly 
suggest the involvement of IL-27 in autoimmunity.

Mechanisms of apoptotic cell-induced inhibition of 
IL-12 production

Phagocytosis of apoptotic cells usually results in an 
anti-inflammatory state with an inhibition of proinflamma-
tory cytokines such as IL-12. How apoptotic cell-derived 
signals regulate IL-12 gene expression was not understood. 
We demonstrated recently [55] that cell-cell contact with 
apoptotic cells is sufficient to induce profound inhibition 
of IL-12 production by activated macrophages. PS could 
mimic the inhibitory effect. The inhibition does not in-
volve autocrine or paracrine actions of IL-10 and TGF-β. 
Moreover, we reported the identification, purification and 
cloning of a novel zinc finger-like nuclear factor, named 
GC-binding protein (GC-BP), that is induced following 
phagocytosis of apoptotic cells by macrophages or by 
treatment with PS. GC-BP selectively inhibits IL-12 p35 
gene transcription by binding to its promoter in vitro and 
in vivo, thus decreasing IL-12 production. Blocking GC-

BP by RNA interference restores IL-12 p35 transcription 
and IL-12 p70 synthesis. Upon contact with apoptotic 
cells, GC-BP, which is present in both the cytoplasm and 
nucleus, undergoes dephosphorylation possibly at tyrosine 
15. The tyrosine-dephosphorylated GC-BP binds the IL-
12 p35 gene promoter between +13 and +19, and blocks 
its transcription, thereby inhibiting IL-12 production [55]. 
The reduced capacity of macrophages to produce IL-12 
is associated with an impaired ability to promote IFN-g 
production by activated T cells [56]. 

GC-binding protein (GC-BP)

The GC-BP gene is uniquely present in the mouse ge-
nome, located on chromosome 7, with a postulated 3-exon 
structure spanning ~ 10 kb. The 615-amino acid residues 
of GC-BP with a calculated molecular weight of 68.3 kDa 
predict strongly that it is a zinc finger-containing protein 
and transcriptional repressor. The mouse cDNA was origi-
nally isolated from a tissue biopsy of the MMTV-LTR/INT3 
mammary tumor. PSORT II analysis indicates with a very 
high probability and reliability (>95%) that it is a nuclear 
protein with 16 putative C2H2 type zinc finger motifs that 
could interact with DNA. However, in reality it is present 
in approximately equal amounts in the cytoplasm and in the 
nucleus, and the importance of these putative zinc fingers is 
uncertain since the N-terminal 27 amino acids with only one 
zinc finger retains ~ 50% of GC-BP’s transcriptional capac-
ity [55]. There is a human ortholog of the predicted protein 
sequence of mouse GC-BP: hypothetical protein FLJ13479 
(NCBI database), which is 93% homologous to its mouse 
counterpart. Mouse GC-BP shares 33% homology with 
mouse zinc finger protein 51(Zfp-51), with 19 contiguous 
zinc fingers and being ubiquitously expressed [57]. The 
rat homologue of GC-BP (40% at amino acid level) is zinc 
finger protein 37 (Zfp-37), a novel peroxisome proliferator 
responsive cDNA isolated originally from rat hepatocytes 
[58]. In this context, it is curious to note that there is a 
good putative binding site, AGGTCT, in the 5’ UTR of 
GC-BP for peroxisome proliferator-activated receptor 
(PPAR)/retinoid X receptor (RXR) heterodimers. PPARs 
as well as another family of nuclear hormone receptors, 
liver X receptors (LXRs), are activated by trigleride-rich 
lipoproteins, oxidized low-density lipoprotein (LDL), and 
apoptotic cells in macrophage lipid metabolism [59]. Rel-
evantly, it has been shown that PPARg agonists can inhibit 
experimental autoimmune encephalomyelitis (EAE), a Th1 
cell-mediated inflammatory demyelinating disease model 
of multiple sclerosis (MS), by blocking IL-12 production, 
IL-12 signaling and Th1 differentiation [60]. Thus, GC-
BP may have additional unidentified targets involved in 
broader areas of biology than the original data revealed.
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Model of GC-BP-mediated inhibition of IL-12 pro-
duction during phagocytosis

Apoptotic cells, upon contact with professional phago-
cytes induce a profound inhibition of IL-12 production, in 
part, by selectively targeting the transcription of the p35 
gene. The chief findings of our recently published study 
[55, 61] and our working hypothesis are summarized as 
follows:

1) A target cell undergoing apoptosis displays charac-
teristic surface changes including externalization of PS, 
which serves as a marker recognized by phagocytes such 
as macrophages. 

2) The interaction between the apoptotic cell and the 
macrophage, particularly between PS and PSR, initiates a 
signaling event that acts on the GC-BP. 

3) Dephosphorylation of GC-BP on tyrosine 15 oc-
curs. 

4) The dephosphorylated GC-BP binds to the GC-ele-
ment in the IL-12 p35 promoter. 

5) The binding of GC-BP prevents IL-12 p35 gene 
transcription, thus IL-12 protein synthesis. 

6) In the meantime, the interaction between the apoptotic 
cell and the macrophage including the PS-PSR interaction 
results in the production of anti-inflammatory cytokines 
such as TGF-β? and IL-10. 

7) Together, the suppression of pro-inflammatory cy-
tokines such as IL-12 and anti-inflammatory cytokines 
prevent T cell activation and induce tolerance.

Role of IL-10 in homeostatic regulation of inflamma-
tion and immune response

IL-10 is a pleiotropic cytokine produced by both T and B 
cells and macrophages and possesses both anti-inflamma-
tory and immunosuppressive properties [62]. The ability of 
IL-10 to inhibit cytokine production by both T cells and NK 
cells was found to be indirect, via inhibition of accessory 
cell (monocyte/macrophage) function [63-66]. These initial 
studies were soon followed by extensive research showing 
that IL-10 is an inhibitor of a broad spectrum of mono-
cyte/macrophage functions, including cytokine synthesis, 
nitric oxide production, and expression of MHC class II 
and costimulatory molecules such as CD80/CD86 [67-74]. 
Investigations in numerous inflammatory disease models 
including chronic enterocolitis, cutaneous inflammatory 
condition, endotoxic shock and Shwartzman reaction, and 
autoimmune encephalomyelitis in IL-10-deficient mice 
have yielded strong evidence that IL-10 plays a central 
role in vivo in restricting inflammatory responses [75-79]. 
However, endogenous IL-10 production and systemic ad-
ministration can also exacerbate macrophage- and T-cell 

dysfunction, decrease T-cell apoptosis, blunt antimicrobial 
activity, and increase mortality in other less acute bacterial 
models of sepsis or after thermal injury [80]. In addition, 
IL-10 also processes immunostimulatory effects that have 
not attracted sufficient attention. IL-10 is a potent growth 
factor for B lymphocytes. It promotes B cell proliferation, 
antibody production, and class II expression [81]. IL-10 
enhances, paradoxically, the development of cytotoxic T 
lymphocytes (CTL) [82-84]. It induces NK cytotoxicity 
against NK-resistant tumor cells in vitro and increases IL-
2-induced NK cell proliferation [85]. It acts as a co-factor 
for colony formation by mast cell progenitors [86] and 
thymocytes [87]. The B cell-stimulating property of IL-10 
is thought to be the basis of several antibody-mediated 
autoimmune disorders [88]. 

IL-10 gene expression in microbe- and cytokine-ac-
tivated macrophages 

A key feature of macrophages is their ability to produce 
both proinflammatory cytokines such as IL-1, IL-6, IL-8, 
TNF-α, and IL-12, and anti-inflammatory cytokines such 
as IL-10 and TGF-β in response to microbial stimuli. The 
balance of pro- and anti-inflammatory cytokine production 
is of critical importance to the outcome of an immune re-
sponse. Understanding this delicate balance is essential to 
appreciate the complexity of macrophage biology. A large 
number of studies have been devoted to the dissection of 
the molecular mechanisms involved in the regulation of 
proinflammatory cytokine gene expression, which unveiled 
several important transcription factor families that mediate 
inflammatory response of macrophages such as NF-kB, 
NF-IL6, C/EBP, and interferon regulatory factors [89-96]. 
In contrast, much less is known about the regulation of 
anti-inflammatory cytokines. 

IL-10 gene expression in macrophages is usually trig-
gered by the same typical inflammatory stimuli such 
as lipopolysaccharides (LPS) that induce the release of 
proinflammatory cytokines. However, the kinetics of 
its induction differs from those of the proinflammatory 
mediators [63, 68, 97]. Recent molecular analyses of the 
murine IL-10 promoter show that IL-10 transcription in 
macrophage cell types can be regulated by constitutive 
and ubiquitous transcription factors such as Sp1 and Sp3, 
suggesting that IL-10 may be produced at low levels 
constitutively to maintain certain level of control over 
“baseline” inflammation [98, 99]. Another study provided 
evidence that post-transcriptional regulation of IL-10 gene 
expression through sequences in the 3'-untranslated region 
of the IL-10 mRNA contributes to its overall production as 
well [100, 101]. A critical role for Stat3 but not other Stat 
proteins in LPS-induced IL-10 transcription in a human 
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B cell line was reported by Benkhart and colleagues who 
demonstrated a direct interaction of Stat3 with the human 
IL-10 promoter at -120 [102]. Since Stat3 is also the me-
diator of IL-10 signaling via the IL-10 receptor [103], this 
finding provides a mechanistic explanation for the noted 
autoregulation of IL-10.

IL-10 gene expression during phagocytosis of apop-
totic cells

Our group has carried out studies to elucidate the mo-
lecular mechanism whereby apoptotic cells induce the 
production of IL-10 by phagocytic macrophages. Our 
preliminary data (unpublished) suggest that: 

1) Apoptotic cells induce IL-10 gene transcription and 
protein production in macrophages.

2) Phagocytosis of apoptotic cells is not required for 
IL-10 production by macrophages. Cell-cell contact is 
sufficient. It’s partially CD36-dependent.

3) The major apoptotic cell-response element (positive 
regulator) in the human IL-10 promoter is mapped to -
106/-98, to which binding with specific nuclear protein(s) 
is induced by apoptotic cells.

4) A negative element is mapped to -171/-129 where a 
novel nuclear binding activity has been identified, and this 
activity is inhibited by contact with apoptotic cells.

5) The p38 mitogen-activated protein kinase (MAPK) 
is critically involved in apoptotic cell-medicated IL-10 
transcription and post-transcriptional regulation.

6) CD36 is essential in the induction of p38 MAPK 
activation by apoptotic cells.

Conclusion

Immunoregulatory cytokines IL-10 and IL-12 play im-
portant roles in the etiology and pathology of many autoim-
mune diseases. Elucidation of the apoptotic cell-mediated 
signaling mechanisms involved in the control of IL-10 and 
IL-12 production during cell turnovers under normal and 
pathological conditions may help us counter the cytokine 
dysregulation and control inappropriate host immune reac-
tions in disorders such as autoimmunity, infectious diseases, 
graft-versus-host disease, and cancer.
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