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ABSTRACT
Genetic polymorphisms in human genes can influence the risk for HIV-1 infection and disease progression, although

the reported effects of these alleles have been inconsistent. This review highlights the recent discoveries on global and
Chinese genetic polymorphisms and their association with HIV-1 transmission and disease progression.
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INTRODUCTION
HIV-1 infection results in a variety of clinical outcomes.

The majority of HIV-1 infected individuals progress to
AIDS within 5 to 10 years, some progress rapidly to AIDS
(termed rapid progressors) while others progress to AIDS
slowly (slow progressors). A small number of HIV-1 in-
fected individuals, termed long-term non progressors
(LTNP), remain clinically healthy for more than a decade
after infection [1-4]. There are also some individuals who
remain seronegative despite high risk and/or multiple ex-
posures to HIV-1. These exposed seronegatives (ES) in-
clude infants born to HIV-1 infected mothers [5-7], com-
mercial sex workers in epidemic areas [8-25], hemophili-
acs who received HIV contaminated factor VIII prepara-
tions [26, 27], and sexual partners of known HIV-1 in-
fected persons [28-33]. Understanding the mechanisms
that account for slower disease progression in LTNP and
the protection against HIV-1 infection observed with ES
is important for the development of more potent thera-

peutic regimens and a vaccine. It is likely that both viral
and host factors may contribute to these outcomes. Ac-
quired immune responses, including cellular [5, 8-11, 14,
15, 17, 26, 28, 34-37] and humoral [10, 16, 20, 38-44]
responses to HIV-1, may play an important role in pro-
tecting against and controlling HIV-1 infection. Signifi-
cant studies in the past few years have also demonstrated
that innate immunity including genetic polymorphisms in
host genes can affect the risk for HIV-1 infection and
disease progression (Tab. 1), although the effect of these
alleles has been inconsistent [32, 45-55] (reviewed in
[56]). Here, we review global and Chinese studies on
human genetic polymorphisms and their association with
HIV-1 infection.

VARIATION IN THE CCR5 CODING REGION
HIV-1 requires CD4 as its primary receptor and a

chemokine receptor as a co-receptor to enter cells [57-
59]. Based on the co-receptor utilization, HIV-1 strains can
be classified as “R5 tropic HIV-1” that primarily utilize C-C
chemokine receptor 5 (CCR5) and “X4 tropic HIV-1” that
use C-X-C chemokine receptor 4 (CXCR4) [60]. R5
tropic viruses dominate in HIV-1 transmission from per-
son to person, while X4 HIV-1 strains are frequently found
during the later stages of HIV-1 infection [61]. CCR5-

32, an allele of CCR5 that contains a 32 bp deletion,
codes for a nonfunctional co-receptor and cell lines ho-
mozygous for CCR5- 32 are resistant to R5-virus but
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individuals that are CCR5- 32 homozygotes (people who
inherited the CCR5- 32 from both parents) are resistant
to HIV-1 infection, indicating that genotype CCR5- 32
is highly protective against HIV-1 infection [45-50, 54].
However, this protection is not absolute because rare in-
dividuals homozygous for CCR5- 32 are infected with
HIV-1 strains that may utilize another co-receptor, such
as CXCR4 [64-68]. Furthermore, homozygous CCR5-

32 is found only in 1% of the general population of
Caucasians, but not in Africans, Asians or other ethnic
groups [45-50, 54], and the majority of highly exposed
yet uninfected individuals have two normal CCR5 alleles
(called wild-type, or wt). Similarly, we found CCR5- 32
homozygotes in 1.0% (7 out of 705) of HIV-1 seronega-
tive individuals and 3.1% (3 out of 97) of ES.

CCR5- 32 heterozygotes (people who inherited the
CCR5- 32 allele from one parent and a functional CCR5
allele from the other parent) are susceptible to HIV-1
infection; most studies have not supported an association
of the heterozygous CCR5- 32 genotype with reduced
HIV-1 transmission risk for adult and pediatric popula-
tions [47-49, 69-73]. However, our recent study sug-
gests that individuals with the combination of heterozy-
gous CCR5- 32 and P1 CCR5 promoter genotype (see
below) are relatively resistant to HIV-1 transmission [74].
According to most reports [47-49, 55, 75-81] but not all
[82, 83], individuals with heterozygous CCR5- 32
progress from HIV-1 infection to AIDS more slowly than
persons with two normal CCR5 alleles.

CCR5- 32 homozygotes make up approximately 1-
3% of northern European populations; CCR5- 32 het-
erozygotes and wt individuals comprise approximately
14% and 83%, respectively, of the remainder [46, 84].
The polymorphism demonstrates a decreasing north-south
cline across Eurasia and is largely absent in African, Asian
and Oceanic populations [84-86], interestingly this distri-
bution may have become fixed 700 years ago in north-
western Europe [86]. Indeed, studies to date indicate that
CCR5- 32 mutant alleles were absent or infrequent in
Chinese [87-93]. Homozygous genotypes have not been
identified in Chinese populations, while heterozygous
CCR5- 32 is extremely rare or absent in most Chinese
populations studied [87-93]. There is no evidence that
CCR5- 32 influences the HIV-1 transmission or epidemic
in China.

Wang et al in collaboration with us [87] conducted a
large scale investigation on human genetic polymorphisms
in three cohorts of Chinese: 1) 3165 indigenous healthy
subjects representing eight ethnic groups: Han (n = 1406),
Uygur (n = 316), Mongolia (n = 134), Hui (n = 386),
Tibetan (n = 330), Zhuang (n = 378), Dai (n = 101), and
Jingbo (n =114); 2) 330 HIV-1 infected (86 subjects in-

fected by sexual transmission and 198 subjects infected
by HIV-1 contaminated blood or by sharing injection
equipment; the remaining 46 subjects said nothing about
HIV-1 transmission); and 3) 474 HIV-1 uninfected Han
Chinese belonging to one of two HIV-1 high-risk groups:
intravenous drug users (n = 215) and individuals with
sexually transmitted diseases (n = 259). Heterozygous
CCR5- 32 genotypes were found in 3 out of 1254 Han
Chinese, with an allele frequency of 0.00119. Findings
from this study and others [88, 89] show that CCR5- 32
mutants do occur in Chinese population (all are individu-
als with heterozygous CCR5- 32), and can be inherited
at a very low frequency [87-89].

VARIATION IN CCR5 PROMOTER REGION
Polymorphisms in the CCR5 promoter are associated

with altered disease progression but not reduced trans-
mission risk of HIV-1 infection [51, 94]. Of the ten alleles
in the CCR5 promoter (CCR5P1 to CCR5P10), only ho-
mozygote CCR5P1 is associated with an accelerated pro-
gression (by approximately 4 years) to AIDS [51]. This
acceleration of disease progression was most marked in
the first 5 years of infection. McDermott et al reported
that a point mutation, 59029A/G, which is linked to the
CCR5P1 allele, accelerated progression to AIDS by 3.8
years [94]. However, there is no association between the
CCR5P1 or 59029A promoter genotypes to either increased
in vivo expression of CCR5 mRNA or cell surface pro-
teins [51, 94]. Thus, the mechanisms of action for the
CCR5P1 and 59029A promoter remain to be defined.

There is currently little data on the polymorphisms in the
CCR5 promoter in Chinese populations. A study on 96 HIV
negative Chinese individuals in Taiwan indicates that only
CCR5P1 and P4 haplotypes were detected, and the P1/P1,
P1/P4 and P4/P4 genotype frequencies were 21.0%,
41.1% and 37.9%, respectively [95]. The sequencing data
confirmed the results of previous studies, showing that
CCR5P1 exhibited complete linkage disequilibrium with a
polymorphic allele 59029A present in the CCR5 promoter.
Furthermore, fluorescence-activated cell sorter analysis
revealed that, in the absence of the CCR2-64I mutation,
individuals carrying CCR5P1 tended to express more sur-
face CCR5 on monocytes and CD4+ cells. However, the
association of the CCR5P1 with HIV-1 infection in Chi-
nese populations is currently unknown.

VARIATION IN THE CCR2 CODING REGION
CCR2 is a minor HIV-1 coreceptor. The gene that codes

for this chemokine receptor has a variant allele causing a
Val-Ile switch at amino acid position 64 (CCR2-64I) in
the first transmembrane domain of CCR2. Unlike the
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CCR5- 32 allele that inactivated the major HIV-1 co-
receptor, CCR2-64I causes a conservative change in a
nonexposed portion of a coreceptor of questionable physi-
ologic relevance [68, 96, 97]. CCR2-64I is common and
found in 10% of Caucasians, 15% of African-Americans,
25% of Asians and 17% of Hispanics [50]. Epidemiologic
studies by Smith et al first demonstrated the association
of CCR2-64I with delayed HIV-1 disease progression [50],
which was confirmed by most subsequent studies [73,
98, 99], but not by others [82, 100, 101]. CCR2-64I is
not associated with reduced risk for HIV-1 infection [50].
The mechanism for the association of CCR2-64I with
delayed disease progression has not been elucidated de-
spite significant attempts to do so [98, 102, 103].

The frequencies of heterozygous and homozygous
CCR2-64I in Chinese were 13-35% and 1-8%,
respectively, varying from study to study [87-93]. There
is no difference in the frequencies of both heterozygous
and homozygous CCR2-64I between HIV-1 infected and
HIV seronegative individuals, suggesting no association
of CCR2-64I with HIV-1 transmission in Chinese. There
is also generally no evidence of association of CCR2-64I
with disease progression in HIV-1 infected Chinese indi-
viduals [87-93]. The allelic frequency of CCR2-64I was
about 20% (95% CI, 15~30%) [87-93], which is signifi-
cantly higher than that in other ethnic groups including
Caucasians. Furthermore the polymorphisms of CCR2-
64I in the Han Chinese population were different from
those in American Caucasians [87].

CCR2-64I was common in different ethnic groups in
Chinese populations [87] (f range: 16.23%–28.79%), with
the lowest frequency observed in the Jingbo (f=16.23%).
The Dai, Hui, and Uygur ethnic groups had CCR2-64I
allele frequencies similar to that of the Han group (f range:
19.15%~21.76%), but the Mongolia and Zhuang groups
tended to have a higher frequency (f range: 23.41%~24.
63%), with the highest frequency observed in the Tibetan
population (f=28.79%). However, there was no signifi-
cant differences among CCR2-64I allele and genotype fre-
quencies when the HIV-1 infected group was compared
with either the HIV-1 uninfected STD, IDU, or combined
at-risk group (dominant model: OR = 0.99-1.08, p>0.05; re-
cessive model: OR = 1.22-1.41, p>0.05, respectively).

VARIATION IN SDF1
SDF1 (Stromal-Derived Factor 1, also called CXCL12)

is the primary ligand for the late-stage HIV-1 receptor
CXCR4. Winkler et al reported a Gly-Ala transition at
position 801 (with position 1 as the A of the initiation
codon) of the mRNA for SDF-1b, one of the two isoforms
of the CXCR4 chemokine ligand, and demonstrated that
homozygosity for this SDF1-3'A allele was associated

with delayed disease progression in an analysis of 639
seroincident subjects from four HIV cohorts [104]. Al-
though this observation was confirmed by the French
GRIV cohort at the limit of statistical significance
(probability=0.05), other studies demonstrated contrastly
that the SDF1-3'A homozygous genotype was associated
with accelerated disease progression [73, 105]. Ultimately,
an international meta-analysis of 19 prospective cohort
studies and case-control studies from Europe and Aus-
tralia demonstrated that SDF1-3'A homozygotes have no
decreased risk for AIDS, or death after development of
AIDS [55].

The SDF1-3'A allele was also common in different
Chinese ethnic groups, with the highest frequencies ob-
served in Chinese Han, Zhuang, and Hui (f=27.76%,
25.93%, and 24.87%, respectively) [87]. The SDF1-3'A
allele frequency was significantly lower (p<0.05) among
the Dai, Jingbo, Mongolia, Uygur, and Tibetan popula-
tions (20.30%, 17.70%, 19.10%, 20.02%, and 20.41%,
respectively). There was a slight decrease in SDF1-3'A
homozygotes and heterozygotes in the HIV-1 infected
group compared with the healthy HIV-1 negative Han
group (f=25.61%, 27.76%; p=0.038, respectively). After
correction for multiple comparisons, this difference was
not significant (dominant model: OR=0.84–0.95, p>0.05;
recessive model: OR=1.28–1.30, p>0.05, respectively).

The above results are in general agreement with other
studies in Chinese populations [88-93]. For example, we
observed a similar frequency of SDF1-3'A in Shenzhen
(26.9%, corresponding to 17.6~38.2% of 95% CI) with
a mixture of ethnic Chinese groups. We found a weak
association of SDF1-3'A with low viral load, and no as-
sociation with disease progression after HIV-1 infection
[106].

VARIATION IN RANTES
RANTES (regulated on activation normal T cell ex-

pressed and secreted) is one of the natural ligands for the
chemokine receptor CCR5 and potently suppresses in vitro
replication of the R5 strains of HIV-1 [107], which use
CCR5 as a coreceptor. Two single nucleotide polymor-
phisms (SNP), -403G/A and -28C/G, in the promoter re-
gion of RANTES were initially identified by Liu et al in
Japan [52]. The -403A-28G haplotype was shown to be
associated with delayed disease progression in HIV-1 in-
fected Japanese, but exerts no influence on the incidence
of HIV-1 infection [52]. In European-Americans, the com-
pound genotype -403G/A -28C/C was reported to be re-
sistant to AIDS progression in one study [53], but not in
another [54]. These RANTES polymorphisms have no
effect on HIV-1 infection and disease progression in Afri-
can-Americans [54]. Most recently, An et al have found
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that 3 SNPs (-403A in the promoter, In1.1C in the first
intron, and 3'222C in the 3' untranslated region) are asso-
ciated with increased frequency of HIV-1 infection, and
that the In1.1C allele or haplotypes display a strong asso-
ciation with rapid progression to AIDS among HIV-1 in-
fected African-Americans and European-Americans [108].
These and other RANTES SNPs may also influence the
varied epidemiology of HIV-1 infection throughout the
world [54, 108].

There is relatively little information describing varia-
tion in the RANTES gene and the association with HIV-1
infection in Chinese populations [109, 110]. Liu et al [109]
identified 6 genotypes of RANTES promoter -403 and -
28 in the Han Chinese group. RANTES genotypes AC/
AG, AC/GC, AG/GC, GC/GC were associated with re-
duced susceptibility to HIV-1 infection. However, there
was no significant difference in the allele frequencies be-
tween people living with HIV-1 and HIV negative
individuals. There were significant differences of
RANTES In1.1C between HIV-1 infected and healthy in-
dividuals in males, suggesting that the In1.1C-bearing
genotypes could increase susceptibility to HIV-1 infection.
No such significance was found in females. A study by
Zhao et al of 1082 Chinese blood donors from northern
and southern China and 249 HIV patients from southern
China indicated that Chinese AIDS patients, compared to
seronegative adults, had a significantly higher frequency
of the -403G allele and haplotype I, -403G/-28C (p<0.
05), and a lower frequency of the -403A/A genotype (p
<0.01). Symptomatic patients had a higher frequency of
the -28G allele and a lower frequency of the -28C/C geno-
type (p<0.01). These results suggest that -403G may be
associated with increased susceptibility to HIV infection,
while -28G may be associated with advanced disease
progression. The impact of these SNPs on HIV infection
appears to be unique in Chinese, while a large scale study
would be warranted to verify these findings.

VARIATION IN HLA
The HLA (human leukocyte antigen) region includes

128 expressed genes, of which, about 43 genes are asso-
ciated with human immunity [111]. HLA class I (A, B and
C) and II genes (IDR, DQ and DP) have considerable
allele variation between individuals and populations, which
provides a broad range for individual recognition of viral
agents to which they have been exposed in the past, as
well as those to which they have not [112]. Because dif-
ferent HLA alleles specify cell-surface molecules with
specific motif recognition sites for infectious agents [113],
differential HIV-1 peptide motif recognition can influence
both the time interval from infection to AIDS [114] and
the kinetics of HIV-1 adaptive escape from immune sur-

veillance in an infected individual [115]. For example,
Carrington et al demonstrated the association of heterozy-
gosity of HLA alleles B35 and Cw4 with accelerated dis-
ease progression [116]. Two HLA alleles, HLA-B27 and
HLA-B57 are associated with a delayed progression to
AIDS [117, 118]. Activating the killer immunoglobulin-
like receptors (KIRs) allele KIR3DS1, in combination with
HLA alleles (HLA-Bw4) that encode molecules with iso-
leucine at position 80 (HLA-B Bw4-80Ile), was associ-
ated with delayed progression to AIDS [119].

Xu et al [120] determined the distribution of HLA-B
alleles in 106 healthy HIV negative and 73 HIV positive
Chinese Yi ethnic individuals and its association with HIV
infection. The frequency of alleles B*07, B*35, and B*46
were increased in HIV-1 positive subjects, whereas the
alleles B*55, B*44 and B*78 were absent in the HIV in-
fected persons studied. The B*46 allele was present in a
significantly higher gene frequency among HIV-1 posi-
tive individuals (P=0.02, OR=3.32, 95% CI=1.13-9.78)
compared with control subjects, suggesting that HLA-
B*46 may be associated with its increased susceptibility
to HIV-1 infections.

VARIATION IN DC-SIGN AND DC-SIGNR COD-
ING AND PROMOTER REGION

Because dendritic cells (DCs) are among the first cells
encountered by HIV-1 during sexual transmission and DCs
migrate from mucosal sites to the secondary lymphoid
organs upon capturing antigen [121, 122], it has been
proposed that HIV-1 uses DCs as carriers to gain entry
into lymph nodes and subsequently infect CD4+ T cells
[123]. DC-SIGN (Dendritic cell-specific intercellular ad-
hesion molecule-3-grabbing nonintegrin) on DCs, origi-
nally described as a C-type (calcium-dependent) lectin, is
able to capture HIV-1, HIV-2 and SIV [124], and retains
the attached virus in an infectious state for days and then
transmits the virus to CD4 and co-receptor positive cells
[123]. DC-SIGNR (DC-SIGN related) shows similar func-
tions to DC-SIGN for capturing HIV-1 and enhancing HIV-
1 infection of T cells [125, 126]. Studies including ours
have shown that mRNA encoding DC-SIGN and DC-
SIGNR is present in DCs [127-129], though the DC-
SIGNR transcripts are largely alternatively spliced
isoforms [127].

Both DC-SIGN and DC-SIGNR, clustered on chro-
mosome 19 [125, 128], are organized into three domains:
an N-terminal cytoplasmic region, a neck region contain-
ing seven repeats of a 23 amino acid sequence, and a C-
terminal domain with homology to C-type lectins [128].
We assessed whether polymorphisms in the DC-SIGN
and DC-SIGNR repeat region could affect individual HIV-
1 susceptibility and subsequent disease progression by

Genetics and HIV-1 infection
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analyzing DC-SIGN and DC-SIGNR repeat polymor-
phisms in diverse cohorts of ES, HIV-1 seropositive (HIV-
1+), long-term non-progressors (LTNP), and HIV-1 se-
ronegative (HIV-1-) individuals. We identified novel vari-
ants in DC-SIGN repeat region and observed that het-
erozygous (7/6 and 7/8) DC-SIGN reduced the risk of
HIV-1 infection (3.2% in ES, 0.0% in HIV-1+, P = 0.011)
[32]. Of the 835 individuals we tested, all 8 individuals
with DC-SIGN repeat region variations were from HIV-
1- individuals, of whom 3 were in ES. Compared with
HIV-1+ individuals, a higher prevalence of DC-SIGN
variations in the repeat region was observed among ES
individuals, suggesting an association of DC-SIGN varia-
tion with resistance to HIV-1 infection in ES [32]. We
further assessed polymorphisms in the DC-SIGNR re-
peat region in diverse cohorts of multiply exposed se-
ronegative or high-risk seronegative, HIV-1 infected and
HIV-1 seronegative individuals from Seattle and the
Multicenter AIDS Cohort Study (MACS) cohorts [130].
Our results suggest that individuals with a 7/7 genotype
in the DC-SIGNR repeat region are associated with an
increased risk for HIV-1 infection (P=0.0015). However,
these effects were much stronger in the Seattle cohort
(P=0.0014) than in the MACS cohort (P=0.1890). Indi-
viduals with a 7/5 genotype in the DC-SIGNR repeat re-
gion are more frequently in the multiply exposed serone-
gative or high-risk seronegative cohorts in the Seattle-
MACS combined cohort (P=0.029) or in the Seattle co-

hort only (P =0.027). Most recently, we identified the
“resistant” variants of DC-SIGN and DC-SIGNR heterozy-
gous 7/5 in Chinese populations, and are further deter-
mining their association with HIV-1 infection in China (Zhu
et al, personnel communication).

Matin et al examined 1,611 European-American indi-
viduals at risk for parental (n=713) or mucosal (n=898)
infection for genetic polymorphisms in DC-SIGN pro-
moter region [131]. It was found that individuals at risk
for parentally acquired infection who had -336C were more
susceptible to infection than were persons with -336T
(odd ratio=1.87, p= 0.001). However, this association was
not observed in those at risk for mucosally acquired
infection.

CONCLUSION
Results from us and others indicate that homozygous

CCR5- 32, the combination of heterozygous CCR5- 32
and CCR5-59029A, and the DC-SIGN and DC-SIGNR
repeat polymorphisms affect HIV-1 transmission (Tab. 1).
However, homozygous CCR5- 32 has not been identi-
fied and heterozygous CCR5- 32 is extremely rare in
Chinese populations, indicating no or little effect of CCR5-

32 on HIV-1 transmission and epidemic in China. Ge-
netic polymorphisms that have been shown to influence
HIV-1 transmission are relatively rare and only account
for the resistance of a small proportion of ES individuals
to infection [32, 45-54], underscoring the need for more

Tab. 1 Human gene alleles that affect HIV-1 infection
Gene Allele Effects on HIV-1 transmission and disease progression
CCR5- 32 Homozygosity: decrease susceptibility to infection with R5 HIV-1

Heterozygosity: delay progression to AIDS
CCR5- 32 plus CCR5-P1: decrease susceptibility to HIV-1 infection

CCR5-P1 Accelerate progression to AIDS
Combined with CCR5- 32: decrease susceptibility to HIV-1 infection

CCR2-V64I Heterozygosity: delay progression to AIDS
SDF1-3´A Homozygosity: may or may not delay progression to AIDS
RANTES-403A-28G May or may not delay progression to AIDS
RANTES-403A-28C May or may not resist to HIV-1 infection
RANTES-In1.1C Accelerate disease progression
HLA-B*27 Delay disease progression
HLA-B*57 Delay disease progression
HLA-B*35-Px Accelerate disease progression
KIR3DS1 Combined with HLA-Bw4: delay disease progression
DC-SIGN-7/6 or 7/8 Heterozygosity: decrease susceptibility to HIV-1 infection
DC-SIGNR-7/5 Heterozygosity: decrease susceptibility to HIV-1 infection
DC-SIGNR-7/7 Homozygosity: increase susceptibility to HIV-1 infection
DC-SIGN-P-336C Increase susceptibility to parenteral transmission of HIV-1

Tuo Fu ZHU et al
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research.
There are relatively more genetic polymorphisms in

human genes that may alter disease progression of HIV-1
infection (Tab. 1). However, the associations of genetic
variants with HIV-1 disease progression in Chinese have
not been well established. Only RANTES -403A and -
28G, and SDF1-3'A alleles have been shown to have a
weak influence on the disease progression in HIV-1 in-
fected Chinese.

The relatively negative results from studies to date on
Chinese populations may not necessarily indicate that the
genetic polymorphisms have little effect on HIV-1 infec-
tion in Chinese populations. Instead, more efforts should
be made to establish good study cohorts including longi-
tudinally followed “resistant” ES, LTNP and primary HIV-
1 infection. Further investigation of the association of these
polymorphisms with HIV-1 infection with well established
study cohorts, and the identification of new polymor-
phisms that may influence infection and disease progres-
sion is warranted. In addition, some less common poly-
morphisms identified such as in CCR5 [132-136] and
CXCR4 [137, 138] might be included in large scale stud-
ies with well-established cohorts.
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