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ABSTRACT

Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene
overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety
of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play impor-
tant roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG
island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis

and its relevance of clinical implications.
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INTRODUCTION

The incidence of gastric cancer has declined; however,
it continues to be the second most common malignant
neoplasms across the world and the second leading cause
of cancer death [1]. Epigenetics has an important role in
biological research and affects many different areas of
study including cancer biology [2, 3], viral latency [4-7],
activity of mobile elements [8], somatic gene therapy [9-
14], cloning and transgenic technologies, genomic im-
printing [15, 16], and developmental abnormalities [15,
16]. Epigenetic silencing of tumor-related genes due to
CpG island methylation has been recently reported in
gastric carcinoma [17]. CpG islands are 0.5 to 2 kb regions
rich in cytosine-guanine dinucleotides and are present in
the 5' promoter region of approximately 40-50% of
human genes [18]. Methylation of cytosines within CpG
islands is associated with loss of gene expression by re-
pression of transcription and is observed in tumorigenesis,
as well as in physiological conditions such as X chromo-
some inactivation and aging [19-24].

Gastric carcinoma can arise either from precursor le-
sions or de novo. It has been demonstrated that some
gastric carcinoma may arise from gastric adenomas or
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flat dysplasias, similar to the consequence of colorectal
adenoma derived from adenocarcinoma [25-28]. The cu-
mulative prevalence of malignant transformation of gastric
dysplasia/adenoma has been reported to be greater than
10% in long-term follow-up studies [29, 30]. Epigenetic
alterations have been acknowledged as an important mecha-
nism contributing to early gastric carcinogenesis. Previous
studies have characterized epigenetic abnormalities in in-
testinal metaplasia (IM) and adenoma, which are precur-
sors of invasive adenocarcinoma [31, 32].

DNA METHYLATION IN CANCER

DNA methylation has become the topic of intense in-
vestigation in cancer cells. As compared with normal cells,
the malignant cells show major disruptions in their DNA
methylation patterns [32]. The tumor cells are character-
ized by significant modifications of DNA methylation sys-
tem including general genome demethylation, increase in
DNA methyltransferase activity, and local hypermethylation
[34-35]. These modifications seem to be contradictory,
since it seems difficult to explain the increase in DNA
methyltransferase activity with local hypermethylation of
the genome and overall demethylation on the remaining
genome. This contradiction is further clarified by better
understanding of the DNA methylation system. The
demethylation has been estimated to involve almost exclu-
sively the “dispersed” CpG (~80% of total content, and
they are methylated in normal cells). In contrast, local
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hypermethylation occurs on the CpG islands (about 20%
of total content, and are not methylated in normal cells
excluding certain exceptions) does not compensate the
demethylation of “dispersed” CpG to give general genome
demethylation. In tumor cells the reciprocal relations be-
tween the methylation levels of the CpG islands and of
“dispersed” CpG, are also preserved. The increased ac-
tivity of DNA methyltransferase frequently seen in tumor
cells can be one of the factors responsible for the aberrant
methylation of CpG islands.

Methylation of tumor suppressor genes

Inactivation of tumor suppressor genes by DNA me-
thylation in promoter region plays an important role in
carcinogenesis. The tumor suppressor genes that undergo
aberrant CpG island methylation in human cancer can af-
fect important cellular pathways including cell cycle regu-
lation and proliferation. For example, in p16™**/Rb/cdk4
pathway, the cell-cycle inhibitor p16™*** is methylated in
various human primary tumors and cell lines [36, 37],
allowing the cancer cells to escape senescence and to
proliferate Rb itself can also be occasionally inactivated
by aberrant methylation [38, 39]. APC/B-catenin/E-
cadherin pathway has been altered in a variety of human
cancers. APC gene is commonly mutated in sporadic
colon cancer but the role of the APC mutation in other
tumor systems is not clear. Recently, it is been shown
that aberrant methylation of APC is a common phenome-
non in other aerodigestive tract neoplasms [40] and that
E-cadherin promoter hypermethylation is important for
the cancer biology of breast and other tumor types [41,
42].

Methylation in DNA mismatch repair gene

DNA mismatch is in the crossroad of all other cellular
pathways. DNA methylation is one of the major players in
causing alterations of DNA mismatch repair genes. Me-
thylation-mediated silencing of the mismatch DNA repair
gene hMLH 1 in sporadic cases of colorectal, endometrial,
and gastric cancers are responsible for the high level of
microsatellite instability in tumors [43-47]. The promoter
hypermethylation of MGMT [48] that prevents the removal
of groups at the O° position of the guanine is associated
with particular type of K-ras and p53 mutations [49, 50];
and the somatic inactivation of BRCAI by aberrant me-
thylation altering its role in the repair of DNA double-strand
breaks in breast and ovarian tumors [51].

Two types of DNA methylation

Not all of the DNA methylation are tumor specific. In
colon tissues, studies have shown DNA methylation in
certain genes such as ERoa, N33 and MYOD are age-
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related, and this type of methylation is classified as Type A
methylation. In contrast, tumor-specific methylation such
as pl6 and hMLH] is classified as Type C methylation
[17]. A similar distinction between age-related and tumor-
specific methylation has also been shown in gastric can-
cer [52, 53]. In stomach, age-related Type A methylation
genes include E-cadherin and APC [32, 53]. In addition,
Waki et al found that methylation of DAP-kinase, like that
of E-cadherin, was also age-related. The methylation of
DAP-kinase in non-neoplastic epithelia frequently appears
at around age 45 [54].

The significance of the detection of the methylated gene
can depend on the position of the CpG sites examined.
Methylation of AMLHI gene, which was thought to be
cancer-specific [17], was found to be a common age-
related event in normal colonic mucosa, when the entire
hMLH 1 promoter ~700 bp region was analyzed [55]. Par-
tial methylation on AMLH1 promoter region is frequently
present in normal colonic mucosa, especially in older
patients. The AMLH] gene will ultimately shut down when
the methylation spreads to reach a threshold [55].
Therefore, these contradictory results might have been due
to analysis of different CpG sites [17, 55]. In addition, it
has recently been reported that DAP-kinase methylation
was present in virtually every tumor and normal gastric
and colorectal sample when the edge of CpG islands was
examined, although it turned out to be a rather infrequent,
cancer-specific phenomenon when the central region of
the CpG islands was analyzed [56].

CpG island methylator phenotype

Tumors with concurrent methylation in multiple genes
or loci have been defined as CpG island methylation
phenotype-high (CIMP-H) in colorectal and gastric cancers
[17, 52]. The mechanism of concurrent hypermethylation
of multiple genes remains obscure. Apparently, the increase
in DNA methyltransferase activity plays an important
role. Transfection of a cloned human DNMTI gene into
immortalized human fibroblasts leads to the aberrant me-
thylation of CpG islands in promoter regions of several
genes, including E-cadherin and HICI, but CpG islands
associated with other genes (for example, p16™**") are not
altered in methylation state, although DNMT] is expressed
constantly [57]. Therefore, it is evident that the increase
in DNMT1 activity can play a significant role in the selec-
tive aberrant methylation of CpG islands, but not in total
CpG island methylation.

CIMP-H affects only a subset of tumors and a limited
number of genes. The defect that leads to CIMP-H could
be either aberrant de novo methylation (through a mutation
in DNA-methyltransferase for example) or loss of protec-
tion against de novo methylation through the loss of a trans-
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activating factor [58-60]. These CIMP-H tumors may then ~ adenoma. In contrast, the diffuse type of gastric carci-

develop through a pathway that heavilyrelies on this me-  noma tends to arise de novo and is infrequently associated
thylation defect, whereas others rarely show tumor sup-  with dysplasia or adenoma [66-69]. The sequential accu-
pressor gene methylation. Aberrant methylation often oc-  mulation of alternations of APC and K-ras genes, charac-

curs in CpG islands outside of promoter regions in which  teristic of the colorectal adenoma-carcinoma sequence,
it may not affect gene transcription [61]. An important  however, does not occur frequently between adenoma and
question is whether the concordant methylation described  intestinal type adenocarcinoma of the stomach [27, 70-
here provides a growth advantage to affect cells or whether ~ 77]. There are two lines of evidence indicating that not all
it just accompanies tumor development. Additional studies  gastric dysplastic lesions are precursor lesions for gastric
are necessary to clarify whether the genes methylated in ~ carcinoma. First, gastric dysplasia can undergo spontane-
cancer simply reflectthe genome wide methylation defect ~ ous regression clinically, especially low-grade dysplastic
or whether stochastic methylation of each CpG island re-  lesions, and only 11-40% of adenoma/dysplasia progress
sults from selective pressures. to carcinoma [29, 78-81]. Secondly, APC mutations have
been reported to occur more frequently in gastric adenomas

EPIGENETIC ALTERATIONS IN EARLY GASTRIC than in gastric adenocarcinomas [75-77, 81].
TUMORIGENESIS The status of methylation in multiple genes or loci has
There are two major histological types of gastric ad-  been studied extensively in early gastric tumorigenesis fol-
enocarcinoma (intestinal and diffuse) according to the  lowing the stepwise morphologic changes as summarized
Lauren’s classification [62]. The pathogenesis and genetic ~ in Fig. 1 and Tab. 1. Methylation of tumor suppressor
alterations for these two distinct types of adenocarcinoma  genes are frequently present in the non-neoplastic gastric
are also different [63-65]. The most frequent gastric ma-  mucosa including chronic gastritis and intestinal meta-
lignancy is the intestinal type, which is often preceded by ~ plasia (IM). Kang et a/ [32] determined the methylation
sequential steps of precancerous changes, including atro-  frequency of 12 genes, including APC, COX-2, DAP-
phic gastritis, intestinal metaplasia, and either dysplasia or  kinase, E-cadherin, GSTP1, hMLHI, MGMT, pl6, pi14,

14 o CIMP-H
BT .
CIMP-H
Chronic Intestinal Dysplasia Adeno- m
all ) : L7 CIMP-H
gastritis etaplasi adenom carcinom P ethylag& MSI-L or Stabl
or
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Type A APC APC APC APC
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Fig. 1 Epigenetic alterations in the multistep gastric carcinogenesis pathway following the chronic gastritis-intestinal metaplasia-adenoma/
dysplasia-adenocarcinoma sequence. Methylation of APC and E-cadherin genes occur frequently in normal gastric mucosa and chronic
gastritis, and uniformly through the sequence is classified as Type A (age-related) methylation genes. The remaining genes are classified as
Type C (tumor-specific) methylation genes. Genes such as DAP-kinase, MGMT, TIMP3 and THBS! are frequently methylated in intestinal
metaplasia stage, but the methylation frequency is higher in precursor lesions or adenocarcinoma, therefore also classified as Type C
methylation genes. Gastric carcinoma can be further subclassified based on the extent of methylation; CIMP-high (CIMP-H) with concurrent
methylation of multiple genes in >50% of assessed genes, CIMP-low (CIMP-L) with methylation in <50% of assessed genes, or CIMP-
negative (CIMP-N) with no methylated genes. In tumor with CIMP-H, methylation of AMLHI gene is also associated with microsatellite
instability-high (MSI-H) phenotype.
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Tab. 1 Genes and frequency of methylation occur in the multistep gastric carcinogenesis pathway

Gene Normal Chronic Intestinal Dysplasia Adeno-

name mucosa gastriti s metaplasia adenoma carcinoma References

APC 65 81 72 78 [32]

RASSF14 0 0 0 8 [32]

11 26 [82]

DAP-kinase 35 49 34 56 [32]

39 41 [82]

25 37 34 34 [31]

E-cadherin 15 85 72 58 68 [32]

36 45 [82]

TIMP-3 23 44 28 81 [83]

15 37 27 65 [32]

hMLHI 0 7 9 57 [31]

0 22 20 [32]

29 [82]

0 0 6 10 35 [83]

0 0 0 18 20 [31]

24 [81]

17 [85]

MGMT 15 9 10 21 [32]

GSTPI 8 0 0 0 16 [32]

0 [82]

27 [83]

COX2 2 9 4 46 [32]

pl4 30 32 76 63 [32]

8 32 [82]

pl3 19 11 48 [82]

73 [83]

pl6 3 7 11 44 [32]

19 14 45 [82]

65 [83]

0 0 2 12 42 [31]

3 0 7 29 44 [81]

20 [85]

THBSI 18 49 34 56 [32]

17 10 35 28 48 [31]

MINTI 5 5 25 42 41 [81]

7 37 [85]

MINT2 7 6 10 45 39 [81]

10 34 [85]

MINT25 0 37 41 81 90 [81]

11 55 [85]

MINT31 19 21 19 50 33 [81]

37 [85]
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RASSF1A4, THBS1, and TIMP3, by methylation-specific
PCR in this progression sequence. In this study five dif-
ferent classes of methylation behaviors were found: (1)
genes only methylated in carcinoma such as GSTP! and
RASSF1A4, (2) genes showing low methylation frequency
in chronic gastritis, IM, and gastric adenoma but signifi-
cantly higher methylation frequency in carcinoma such as
COX-2, hMLH1, and p16; (3) a gene with low and similar
methylation frequency in four-step lesions such as MGMT,
(4) genes with high and similar methylation frequency in
four-step lesions such as APC and E-cadherin, and (5)
genes showing an increasing tendency of the methylation
frequency along the progression such as DAP-kinase, p14,
THBS1, and TIMP-3. A similar result has also been shown
by other studies. To et al showed three differential methy-
lation patterns: methylation was more frequent in cancer
than in IM (DAP-kinase, pl4, pl15 and p16); comparable
frequencies of methylation in cancer and IM (E-cadherin
and AMLH1); and no methylation (GSTPI) [82]. Among
these genes evaluated, it appears that at least methylation
of APC and E-cadherin are not tumor specific but rather
an age-related phenomenon (Type A methylation gene for
stomach). Therefore, it is crucial to include control non-
neoplastic gastric mucosa; in methylation study of gastric
precursor lesions and carcinomas. It is however, difficult
to classify genes such as DAP-kinase, THBSI and TIMP-3
in which methylation is frequently detected in non-neo-
plastic mucosa and precursor lesions but a higher fre-
quency of methlyation is present in carcinoma stage based
on Type A or Type C methlyation gene classification (Fig. 1).

Concurrent methylation of multiple tumor-related genes
has been detected in 20% of normal tissues adjacent to
gastric carcinoma by Leung et al/ [83]. We have also
shown concurrent methylation (CIMP-H) in 15% of IM
but not in chronic gastritis or normal gastric mucosa us-
ing a panel of six genes/loci including p/6, AMLH]I and
four CpG islands (MINTI1, MINT2, MINT25 and
MINT31) [81]. MINT loci were methylated in 6-21% of
normal mucosa, and in 10-41% of IM. In particular, me-
thylation of MINT25 was more frequent in normal/chronic
gastritis mucosa contiguous with neoplasms and in IM
than in noncontiguous normal/chronic gastritis mucosa.
The mean methylation index and frequency of CIMP-H
increased following the normal/chronic gastritis, IM, ad-
enoma/dysplasia and early adenocarcinoma sequence in-
dicating accumulation of methylation events may play an
important role in early gastric tumorigenesis (Fig. 2) [81].

There are two morphologically distinct gastric precan-
cerous lesions: adenoma (polypoid dysplastic mucosal
lesion) and flat dysplasia. Genetic and epigenetic alterations
separating these two distinct morphological precancerous
lesions remain unclear. We have shown that there was no
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Fig. 2 The frequency of concurrent methylation in multiple genes/loci
(CIMP-H) increased with the histological progression from normal
(NM)/chronic gastritis (CG), to Intestinal metaplasia (IM), adenomas
or dysplasias, and early adenocarcinomas. The majorities of the non-
neoplastic mucosa (NM, CG and IM) are CIMP-L or CIMP-N.

difference in the frequency of individual gene/loci or in
frequency of CIMP-H between flat dysplasias (50%) and
polypoid adenomas (51%) [81]. Interestingly, we have
found that methylation of p/6 gene was more frequent in
adenocarcinoma-associated dysplasia/adenoma and
adenocarcinomas as compared to adenoma/dysplasia
unassociated with adenocarcinoma, indicating methylation
of p16 gene may contribute to the malignant transforma-
tion of gastric precursor lesions [81].

EPIGENETIC ALTERATIONS IN GASTRIC CARCI-
NOMA

The roles of epigenetic alterations in the pathogenesis
of gastric carcinomas have been recently elucidated. Toyota
et al first demonstrated that about one-half of all gastric
cancers had frequent methylation in multiple genes/loci
including p16, hMLHI and multiple tumor specific CpG
islands (MINT1, MINT2, MINT12, MINT25, and
MINT31) that seemed to be methylated de novo during
cancer progression and play an important role in gastric
carcinogenesis [52]. Subsequently, numerous other genes
with methylation have been found in gastric carcinomas
as shown in Fig. 1 and Tab. 1.

Similar to colorectal cancer, the presence of methyla-
tion of AMLH]I gene is strongly associated with loss of
hMLH]1 protein expression and MSI-H phenotype in gas-
tric carcinomas [52, 81, 83]. In contrast to gastric
carcinoma, methylation of AMLH]I genes in gastric pre-
cursor lesions appears to be less frequently associated with
MSI-H phenotype and loss of hMLH]1 protein expression
[81]. The reason for this discrepancy is not clear, but it is
possible that AMLH1 methylation precede the loss of pro-
tein expression.

Genetic alteration of E-cadherin gene has been frequently
detected in gastric carcinomas, especially for diffuse type
adenocarcinoma. Tamura et a/ reported that E-cadherin
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promoter hypermethylation was seen in 27 (51%) of 53
primary gastric carcinomas, including 15 (83%) of 18 un-
differentiated (diffuse) type, and E-cadherin promoter
hypermethylation was seen at similar frequencies in both
early and advanced cases [84]. However, the presence of
E-cadherin gene methylation in non-neoplastic gastric
mucosa makes difficult to determine its role in gastric
carcinogenesis.

In gastric cancer, CIMP-H has been described in 41%
of the tumors by Toyota et al [52]. We have also detected
CIMP-H in 31% of the gastric carcinomas using a similar
panel of genes/loci [85]. Etoh ef al have shown that in-
creased DNMT1 protein expression correlated significantly
with DNA methylation of multiple CpG islands in poorly
differentiated gastric cancers, suggested that DNMT1 may
play a significant role in the development of poorly differ-
entiated gastric cancers by inducing frequent DNA me-
thylation of multiple CpG islands [86].

CLINICAL IMPLICATIONS

The clinical significance of presence of epigenetic al-
terations in gastric cancer remains unclear. It would be
important to know whether the presence or absence of
certain epigenetic changes affects the prognosis. This
would also help in modifying initial patient treatment op-
tions and monitoring response to therapy. It is particularly
important to identify any specific epigenetic alterations in
gastric precursor lesions for predicting malignant trans-
formation since not all the gastric precursor lesions carry
the same malignant transforming potential. Epigenetic si-
lencing of a tumor suppressor gene could be the rate-lim-
iting step that initiates the series of events leading to an
invasive malignant tumor. Methylation of p/6 gene ap-
pears to be a promising candidate to serve this purpose as
shown in our study [81] and supported in a population-
based study by Sun et al that aberrant methylation of p/6
promoter CpG islands might be useful to predict the ma-
lignant potential of dysplasia identified specifically in gas-
tric biopsies [87].

The prognosis of methylation of single genes/loci is
unclear in gastric cancer, but it has been reported that
methylation of MGMT gene was associated with advance
stage and poor prognosis [88]. We have recently shown
that concordant methylation of multiple gene/loci (CIMP-
H) is associated with better survival but is not an indepen-
dent predictor of prognosis in resected gastric cancer [85].
The sensitivity and specificity of DNA methylation markers
in cancer diagnosis depends on several factors, including
the type of cancer and the gene to be studied, the type of
body fluid to be used, and the techniques involved. The
assay needs to be standardized and shown to be useful in
a prospective fashion before it can become clinically useful.
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A more comprehensive methylation profiling for gastric
cancer will be needed to achieve this goal.
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